Supriya Ghosh (Editor)

Schur test

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the L 2 L 2 operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem).

Contents

Here is one version. Let X , Y be two measurable spaces (such as R n ). Let T be an integral operator with the non-negative Schwartz kernel K ( x , y ) , x X , y Y :

T f ( x ) = Y K ( x , y ) f ( y ) d y .

If there exist functions p ( x ) > 0 and q ( x ) > 0 and numbers α , β > 0 such that

( 1 ) Y K ( x , y ) q ( y ) d y α p ( x )

for almost all x and

( 2 ) X p ( x ) K ( x , y ) d x β q ( y )

for almost all y , then T extends to a continuous operator T : L 2 L 2 with the operator norm

T L 2 L 2 α β .

Such functions p ( x ) , q ( x ) are called the Schur test functions.

In the original version, T is a matrix and α = β = 1 .

Common usage and Young's inequality

A common usage of the Schur test is to take p ( x ) = q ( x ) = 1. Then we get:

T L 2 L 2 2 sup x X Y | K ( x , y ) | d y sup y Y X | K ( x , y ) | d x .

This inequality is valid no matter whether the Schwartz kernel K ( x , y ) is non-negative or not.

A similar statement about L p L q operator norms is known as Young's inequality:

if

sup x ( Y | K ( x , y ) | r d y ) 1 / r + sup y ( X | K ( x , y ) | r d x ) 1 / r C ,

where r satisfies 1 r = 1 ( 1 p 1 q ) , for some 1 p q , then the operator T f ( x ) = Y K ( x , y ) f ( y ) d y extends to a continuous operator T : L p ( Y ) L q ( X ) , with T L p L q C .

Proof

Using the Cauchy–Schwarz inequality and the inequality (1), we get:

| T f ( x ) | 2 = | Y K ( x , y ) f ( y ) d y | 2 ( Y K ( x , y ) q ( y ) d y ) ( Y K ( x , y ) f ( y ) 2 q ( y ) d y ) α p ( x ) Y K ( x , y ) f ( y ) 2 q ( y ) d y .

Integrating the above relation in x , using Fubini's Theorem, and applying the inequality (2), we get:

T f L 2 2 α Y ( X p ( x ) K ( x , y ) d x ) f ( y ) 2 q ( y ) d y α β Y f ( y ) 2 d y = α β f L 2 2 .

It follows that T f L 2 α β f L 2 for any f L 2 ( Y ) .

References

Schur test Wikipedia