The relative expansion of the universe is parametrized by a dimensionless scale factor
Contents
In the early stages of the big bang, most of the energy was in the form of radiation, and that radiation was the dominant influence on the expansion of the universe. Later, with cooling from the expansion the roles of mass and radiation changed and the universe entered a mass-dominated era. Recently results suggest that we have already entered an era dominated by dark energy, but examination of the roles of mass and radiation are most important for understanding the early universe.
Using the dimensionless scale factor to characterize the expansion of the universe, the effective energy densities of radiation and mass scale differently. This leads to a radiation-dominated era in the very early universe but a transition to a matter-dominated era at a later time and, since about 5 billion years ago, a subsequent dark energy-dominated era.
Detail
Some insight into the expansion can be obtained from a Newtonian expansion model which leads to a simplified version of the Friedman equation. It relates the proper distance (which can change over time, unlike the comoving distance which is constant) between a pair of objects, e.g. two galaxy clusters, moving with the Hubble flow in an expanding or contracting FLRW universe at any arbitrary time
where
The scale factor is dimensionless, with
The evolution of the scale factor is a dynamical question, determined by the equations of general relativity, which are presented in the case of a locally isotropic, locally homogeneous universe by the Friedmann equations.
The Hubble parameter is defined:
where the dot represents a time derivative. From the previous equation
Current evidence suggests that the expansion rate of the universe is accelerating, which means that the second derivative of the scale factor
According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at the present time we receive light from a distant object with a redshift of z, then the scale factor at the time the object originally emitted that light is
Radiation-dominated era
After Inflation, and until about 47,000 years after the Big Bang, the dynamics of the early universe were set by radiation (referring generally to the constituents of the universe which moved relativistically, principally photons and neutrinos).
For a radiation-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is obtained solving the Friedmann equations:
Matter-dominated era
Between about 47,000 years and 9.8 billion years after the Big Bang, the energy density of matter exceeded both the energy density of radiation and the vacuum energy density.
When the early universe was about 47,000 years old (redshift 3600), mass–energy density surpassed the radiation energy, although the universe remained optically thick to radiation until the universe was about 378,000 years old (redshift 1100). This second moment in time (close to the time of recombination) at which point the photons which compose the cosmic microwave background radiation were last scattered, is often mistaken as marking the end of the radiation era.
For a matter dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:
Dark energy-dominated era
In physical cosmology, the dark-energy-dominated era refers to the last of the three phases of the known universe, the other two being the matter-dominated era and the radiation-dominated era. The dark-energy-dominated era began after the matter-dominated era, i.e. when the Universe was about 9.8 billion years old. As other forms of the matter – dust and radiation – dropped to very low concentrations, the cosmological constant term started to dominate the energy density of the Universe.
For a dark-energy-dominated universe, the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:
Here, the coefficient H in the exponential, the Hubble constant, is
This exponential dependence on time makes the spacetime geometry identical to the de Sitter Universe, and only holds for a positive sign of the cosmological constant, the sign that was observed to be realized in Nature anyway. The current density of the observable universe is of the order of 9.44 x 10−27kg m−3 and the age of the universe is of the order of 13.8 billion years, or 4.358 x 1017s. The Hubble parameter, H, is ~70.88 km s−1Mpc−1. (The Hubble time is 13.79 billion years.) The value of the cosmological constant, Λ, is ~2 x 10−35s−2.