Samiksha Jaiswal (Editor)

SCMaglev

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
SCMaglev SCMAGLEV and Railway Park Central Japan Railway Company

The SCMaglev (superconducting maglev) (formerly called the MLU) is a magnetic levitation (maglev) railway system based on the principle of magnetic repulsion between the track and the cars. The Central Japan Railway Company (JR Central) and the company's Railway Technical Research Institute developed the system.

Contents

On 21 April 2015, a manned seven-car L0 series SCMaglev train reached a speed of 603 km/h (375 mph), less than a week after the same train clocked 590 km/h (370 mph), breaking the previous land speed record for rail vehicles of 581 km/h (361 mph) set by a JR Central MLX01 maglev train in December 2003.

SCMaglev httpsuploadwikimediaorgwikipediacommons11

Scmaglev l0 fastest train in the world


Technology

SCMaglev Japan Commits to Fund Baltimore Washington SCMaglev Project

The SCMaglev system uses an electrodynamic suspension (EDS) system. Installed in the trains' bogies are superconducting magnets, and the guideways contain two sets of metal coils.

SCMaglev FileMLX011 SCMaglev and Railway Parkjpg Wikimedia Commons

The current levitation system utilizes a series of coils wound into a "figure 8" along both walls of the guideway. These coils are also cross-connected underneath the track.

As the train accelerates, the magnetic fields of its superconducting magnets induce a current into these coils due to the magnetic field induction effect. If the train were centered with the coils, the electrical potential would be balanced and no currents would be induced. However, as the train runs on rubber wheels at relatively low speeds, the magnetic fields are positioned below the center of the coils, causing the electrical potential to no longer be balanced. This creates a reactive magnetic field opposing the superconducting magnet's pole (in accordance with Lenz's law), and a pole above that attracts it. Once the train reaches 150 km/h (93 mph), there is sufficient current flowing to lift the train 100 mm (4 in) above the guideway.

These coils also generate guiding and stabilizing forces. Because they are cross-connected underneath the guideway, if the train moves off-center, currents are induced into the connections that correct its positioning.

SCMaglev also utilizes a linear synchronous motor (LSM) propulsion system, which powers a second set of coils in the guideway.

History

Japanese National Railways (JNR) began research on a linear propulsion railway system in 1962 with the goal of developing a train that could travel between Tokyo and Osaka in one hour. Shortly after Brookhaven National Laboratory patented superconducting magnetic levitation technology in the United States in 1969, JNR announced development of the its own superconducting maglev (SCMaglev) system. The railway made its first successful SCMaglev run on a short track at its Railway Technical Research Institute in 1972.

Miyazaki test track

In 1977, SCMaglev testing moved to a new 7 km test track in Hyūga, Miyazaki. By 1980, the track was modified from a "reverse-T" shape to the "U" shape used today. In April 1987, JNR was privatized, and Central Japan Railway Company (JR Central) took over SCMaglev development.

In 1989, JR Central decided to build a better testing facility with tunnels, steeper gradients, and curves. After the company moved maglev tests to the new facility, the company's Railway Technical Research Institute began to allow testing of ground effect trains, an alternate technology based on aerodynamic interaction between the train and the ground, at the Miyazaki Test Track in 1999.

Yamanashi maglev test line

Construction of the Yamanashi maglev test line began in 1990. The 18.4 km (11.4 mi) "priority section" of the line in Tsuru, Yamanashi, opened in 1997. MLX01 trains were tested there from 1997 to fall 2011, when the facility was closed to extend the line to 42.8 km (26.6 mi) and to upgrade it to commercial specifications.

Japan

In 2009, Japan's Ministry of Land, Infrastructure, Transport and Tourism decided that the SCMaglev system was ready for commercial operation. In 2011, the ministry gave JR Central permission to operate the SCMaglev system on their planned Chūō Shinkansen linking Tokyo and Nagoya by 2027, and to Osaka by 2045. Construction is currently underway.

USA

Since 2010, JR Central has promoted the SCMaglev system in international markets, particularly the Northeast Corridor of the United States. In 2013, Prime Minister Shinzō Abe met with U.S. President Barack Obama and offered to provide the first portion of the SC Maglev track free, a distance of approximately 40 miles.

Australia

In late 2015, JR Central partnered with Mitsui and General Electric in Australia to form a joint venture named CLARA ("Consolidated Land and Rail Australia") to provide a commercial funding model using private investors that could build the SC Maglev (linking Sydney, Canberra and Melbourne), create 8 new self-sustaining inland cities linked to the high speed connection, and contribute to the community.

Vehicles

  • 1972 – LSM200
  • 1972 – ML100
  • 1975 – ML100A
  • 1977 – ML500
  • 1979 – ML500R (remodeled ML500)
  • 1980 – MLU001
  • 1987 – MLU002
  • 1993 – MLU002N
  • 1995 – MLX01 (MLX01-1, 11, 2)
  • 1997 – MLX01 (MLX01-3, 21, 12, 4)
  • 2002 – MLX01 (MLX01-901, 22)
  • 2009 – MLX01 (MLX01-901A, 22A: remodeled 901 and 22)
  • 2013 – L0 Series Shinkansen
  • References

    SCMaglev Wikipedia


    Similar Topics