![]() | ||
In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is (isomorphic to) the special orthogonal group of order 4.
Contents
- Geometry of 4D rotations
- Simple rotations
- Double rotations
- Isoclinic rotations
- Group structure of SO4
- Special property of SO4 among rotation groups in general
- Algebra of 4D rotations
- Isoclinic decomposition
- Relation to quaternions
- The eigenvalues of 4D rotation matrices
- The EulerRodrigues formula for 3D rotations
- Hopf Coordinates
- Visualization of 4D rotations
- Generating 4D Rotation Matrices
- References
In this article rotation means rotational displacement. For the sake of uniqueness rotation angles are assumed to be in the segment
A "fixed plane" is a plane for which every vector in the plane is unchanged after the rotation. An "invariant plane" is a plane for which every vector in the plane, although it may be affected by the rotation, remains in the plane after the rotation.
Geometry of 4D rotations
Four-dimensional rotations are of two types: simple rotations and double rotations.
Simple rotations
A simple rotation R about a rotation centre O leaves an entire plane A through O (axis-plane) fixed. Every plane B that is completely orthogonal to A intersects A in a certain point P. Each such point P is the centre of the 2D rotation induced by R in B. All these 2D rotations have the same rotation angle
Half-lines from O in the axis-plane A are not displaced; half-lines from O orthogonal to A are displaced through
Double rotations
For each rotation R of 4-space (fixing the origin), there is at least one pair of orthogonal 2-planes A and B each of which are invariant and whose direct sum A⊕B is all of 4-space. Hence R operating on either of these planes produces an ordinary rotation of that plane. For almost all R (all of the 6-dimensional set of rotations except for a 3-dimensional subset), the rotation angles α in plane A and β in plane B — both assumed to be nonzero — are different. The unequal rotation angles α and β satisfying -π < α, β < π are almost* uniquely determined by R. Assuming that 4-space is oriented, then the orientations of the 2-planes A and B can be chosen consistent with this orientation in two ways. If the rotation angles are unequal (α ≠ β), R is sometimes termed a "double rotation".
In that case of a double rotation, A and B are the only pair of invariant planes, and half-lines from the origin in A, B are displaced through α and β respectively, and half-lines from the origin not in A or B are displaced through angles strictly between α and β.
*Assuming that 4-space is oriented, then an orientation for each of the 2-planes A and B can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one such choice of orientations of A and B are {α, β}, then the angles from the other choice are {-α, -β}. (In order to measure a rotation angle in a 2-plane, it is necessary to specify an orientation on that 2-plane. A rotation angle of -π is the same as one of +π. If the orientation of 4-space is reversed, the resulting angles would be either {α, -β} or {-α, β}. Hence the absolute values of the angles are well-defined completely independently of any choices.)
Isoclinic rotations
If the rotation angles of a double rotation are equal then there are infinitely many invariant planes instead of just two, and all half-lines from O are displaced through the same angle. Such rotations are called isoclinic or equiangular rotations, or Clifford displacements. Beware: not all planes through O are invariant under isoclinic rotations; only planes that are spanned by a half-line and the corresponding displaced half-line are invariant.
Assuming that a fixed orientation has been chosen for 4-dimensional space, isoclinic 4D rotations may be put into two categories. To see this, consider an isoclinic rotation R, and take an orientation-consistent ordered set OU, OX, OY, OZ of mutually perpendicular half-lines at O (denoted as OUXYZ) such that OU and OX span an invariant plane, and therefore OY and OZ also span an invariant plane. Now assume that only the rotation angle
We make the convention that the rotation senses from OU to OX and from OY to OZ are reckoned positive. Then we have the four rotations R1 =
Isoclinic rotations with like signs are denoted as left-isoclinic; those with opposite signs as right-isoclinic. Left- (Right-) isoclinic rotations are represented by left- (right-) multiplication by unit quaternions; see the paragraph "Relation to quaternions" below.
The four rotations are pairwise different except if
Left- and right-isocliny defined as above seem to depend on which specific isoclinic rotation was selected. However, when another isoclinic rotation R′ with its own axes OU′, OX′, OY′, OZ′ is selected, then one can always choose the order of U′, X′, Y′, Z′ such that OUXYZ can be transformed into OU′X′Y′Z′ by a rotation rather than by a rotation-reflection. (I.e., so that the ordered basis OU′, OX′, OY′, OZ′ is also consistent with the same fixed choice of orientation as OU, OX, OY, OZ.) Therefore, once one has selected an orientation (i.e., a system OUXYZ of axes that is universally denoted as right-handed), one can determine the left or right character of a specific isoclinic rotation.
Group structure of SO(4)
SO(4) is a noncommutative compact 6-dimensional Lie group.
Each plane through the rotation centre O is the axis-plane of a commutative subgroup isomorphic to SO(2). All these subgroups are mutually conjugate in SO(4).
Each pair of completely orthogonal planes through O is the pair of invariant planes of a commutative subgroup of SO(4) isomorphic to SO(2) × SO(2).
These groups are maximal tori of SO(4), which are all mutually conjugate in SO(4). See also Clifford torus.
All left-isoclinic rotations form a noncommutative subgroup S3L of SO(4), which is isomorphic to the multiplicative group S3 of unit quaternions. All right-isoclinic rotations likewise form a subgroup S3R of SO(4) isomorphic to S3. Both S3L and S3R are maximal subgroups of SO(4).
Each left-isoclinic rotation commutes with each right-isoclinic rotation. This implies that there exists a direct product S3L × S3R with normal subgroups S3L and S3R; both of the corresponding factor groups are isomorphic to the other factor of the direct product, i.e. isomorphic to S3. (This is not SO(4) or a subgroup of it, because S3L and S3R are not disjoint: the identity I and the central inversion -I each belong to both S3L and S3R.)
Each 4D rotation A is in two ways the product of left- and right-isoclinic rotations AL and AR. AL and AR are together determined up to the central inversion, i.e. when both AL and AR are multiplied by the central inversion their product is A again.
This implies that S3L × S3R is the universal covering group of SO(4) — its unique double cover — and that S3L and S3R are normal subgroups of SO(4). The identity rotation I and the central inversion -I form a group C2 of order 2, which is the centre of SO(4) and of both S3L and S3R. The centre of a group is a normal subgroup of that group. The factor group of C2 in SO(4) is isomorphic to SO(3) × SO(3). The factor groups of S3L by C2 and of S3R by C2 are each isomorphic to SO(3). Similarly, the factor groups of SO(4) by S3L and of SO(4) by S3R are each isomorphic to SO(3).
The topology of SO(4) is the same as that of the Lie group SO(3) × Spin(3) = SO(3) × SU(2), namely the topology of P3 × S3. However, it is noteworthy that, as a Lie group, SO(4) is not a direct product of Lie groups, and so it is not isomorphic to SO(3) × Spin(3) = SO(3) × SU(2).
Special property of SO(4) among rotation groups in general
The odd-dimensional rotation groups do not contain the central inversion and are simple groups.
The even-dimensional rotation groups do contain the central inversion −I and have the group C2 = {I, −I} as their centre. From SO(6) onwards they are almost-simple in the sense that the factor groups of their centres are simple groups.
SO(4) is different: there is no conjugation by any element of SO(4) that transforms left- and right-isoclinic rotations into each other. Reflections transform a left-isoclinic rotation into a right-isoclinic one by conjugation, and vice versa. This implies that under the group O(4) of all isometries with fixed point O the subgroups S3L and S3R are mutually conjugate and so are not normal subgroups of O(4). The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any pair of isoclinic rotations through the same angle is conjugate. The sets of all isoclinic rotations are not even subgroups of SO(2N), let alone normal subgroups.
Algebra of 4D rotations
SO(4) is commonly identified with the group of orientation-preserving isometric linear mappings of a 4D vector space with inner product over the real numbers onto itself.
With respect to an orthonormal basis in such a space SO(4) is represented as the group of real 4th-order orthogonal matrices with determinant +1.
Isoclinic decomposition
A 4D rotation given by its matrix is decomposed into a left-isoclinic and a right-isoclinic rotation as follows:
Let
Calculate from this the so-called associate matrix
M has rank one and is of unit Euclidean norm as a 16D vector if and only if A is indeed a 4D rotation matrix. In this case there exist reals a, b, c, d; p, q, r, s such that
and
The rotation matrix then equals
This formula is due to Van Elfrinkhof (1897).
The first factor in this decomposition represents a left-isoclinic rotation, the second factor a right-isoclinic rotation. The factors are determined up to the negative 4th-order identity matrix, i.e. the central inversion.
Relation to quaternions
A point in 4-dimensional space with Cartesian coordinates (u, x, y, z) may be represented by a quaternion P = u + xi + yj + zk.
A left-isoclinic rotation is represented by left-multiplication by a unit quaternion QL = a + bi + cj + dk. In matrix-vector language this is
Likewise, a right-isoclinic rotation is represented by right-multiplication by a unit quaternion QR = p + qi + rj + sk, which is in matrix-vector form
In the preceding section (Isoclinic decomposition) it is shown how a general 4D rotation is split into left- and right-isoclinic factors.
In quaternion language Van Elfrinkhof's formula reads
or in symbolic form
According to the German mathematician Felix Klein this formula was already known to Cayley in 1854.
Quaternion multiplication is associative. Therefore,
which shows that left-isoclinic and right-isoclinic rotations commute.
The eigenvalues of 4D rotation matrices
The four eigenvalues of a 4-D rotation matrix generally occur as two conjugate pairs of complex numbers of unit magnitude. If an eigenvalue is real, it must be
(*) Example of opposite signs: the central inversion; in the quaternion representation the real parts are +1 and -1, and the central inversion cannot be accomplished by a single simple rotation.
The Euler–Rodrigues formula for 3D rotations
Our ordinary 3D space is conveniently treated as the subspace with coordinate system OXYZ of the 4D space with coordinate system OUXYZ. Its rotation group SO(3) is identified with the subgroup of SO(4) consisting of the matrices
In Van Elfrinkhof's formula in the preceding subsection this restriction to three dimensions leads to
which is the representation of the 3D rotation by its Euler–Rodrigues parameters: a, b, c, d.
The corresponding quaternion formula
where Q = QL, or, in expanded form:
is known as the Hamilton–Cayley formula.
Hopf Coordinates
Rotations in 3D space are made mathematically much more tractable by the use of spherical coordinates. Any rotation in 3D will characterized by a fixed axis of rotation and an invariant plane perpendicular to that axis. Without loss of generality, we can take the xy plane as the invariant plane and the z axis as the fixed axis. Since radial distances are not affected by rotation, we can characterize a rotation by its effect on the unit sphere (2-sphere) by spherical coordinates referred to the fixed axis and invariant plane:
It can be seen that since
It can be seen that since
In 4D space, every rotation about the origin has two invariant planes which are completely orthogonal to each other and intersect at the origin, and are rotated by two independent angles
Visualization of 4D rotations
Every rotation in 3D space has an invariant axis-line which is unchanged by the rotation. The rotation is completely specified by specifying the axis of rotation and the angle of rotation about that axis. Without loss of generality, this axis may be chosen as the z-axis of a Cartesian coordinate system, allowing a simpler visualization of the rotation.
In 3D space, the spherical coordinates
Analogous to the 3D case, every rotation in 4D space has at least two invariant axis-planes which are left invariant by the rotation and are completely orthogonal (i.e. they intersect at a point). The rotation is completely specified by specifying the axis planes and the angles of rotation about them. Without loss of generality, these axis planes may be chosen to be the uz and xy planes of a Cartesian coordinate system, allowing a simpler visualization of the rotation.
In 4D space, the Hopf angles
Generating 4D Rotation Matrices
Four dimensional rotations can be derived by Rodrigues rotation formula and Cayley Formula. Let
Erdoğdu, M., Özdemir, M. (2015). "Generating Four Dimensional Rotation Matrices".
Let
Moreover, the skew-symmetric matrices
and
Then,
is a rotation matrix in
Also,
is a rotation matrix in
Generating rotation matrix can be classified with respect to the values
I. If
II. If
III. If