Nationality United States Name Robion Kirby | Doctoral advisor Sherman Dyer | |
![]() | ||
Born February 25, 1938 (age 86) Chicago, Illinois ( 1938-02-25 ) Institutions University of California Doctoral students Selman AkbulutStephen BigelowTim CochranRobert GompfTomasz Mrowka Known for Kirby–Siebenmann classKirby calculus Books Foundational Essays on Topological Manifolds, Smoothings, and Triangulations Awards Guggenheim Fellowship for Natural Sciences, US & Canada Similar People Laurent C Siebenmann, Tomasz Mrowka, Clifford Taubes |
Robion kirby history of low dimension topology
Robion Cromwell Kirby (born February 25, 1938) is a Professor of Mathematics at the University of California, Berkeley who specializes in low-dimensional topology. He coinvented the Kirby–Siebenmann invariant for classifying the piecewise linear structures on a topological manifold and proved the fundamental result on the Kirby calculus, a method for describing 3-manifolds and smooth 4-manifolds by surgery on framed links. Along with his significant mathematical contributions, he is an influential figure in the field, with over 50 doctoral students and his famous problem list.
Contents

He received his Ph.D. from the University of Chicago in 1965. He soon became an assistant professor at UCLA. While there he developed his "torus trick" which enabled him to solve, in dimensions greater than four (with additional joint work with Larry Siebenmann), four of Milnor's seven most important problems in geometric topology. Consequently, in 1971, he was awarded the Oswald Veblen Prize in Geometry by the American Mathematical Society.
In 1995 he became the first mathematician to receive the NAS Award for Scientific Reviewing from the National Academy of Sciences for his problem list in low-dimensional topology. He was elected to the National Academy of Sciences in 2001. In 2012 he became a fellow of the American Mathematical Society.
Kirby is also the President of Mathematical Sciences Publishers, a small non-profit academic publishing house that focuses on mathematics and engineering journals.