Representational state transfer (REST) or RESTful Web services are one way of providing interoperability between computer systems on the Internet. REST-compliant Web services allow requesting systems to access and manipulate textual representations of Web resources using a uniform and predefined set of stateless operations. Other forms of Web service exist, which expose their own arbitrary sets of operations such as WSDL and SOAP. "Web resources" were first defined on the World Wide Web as documents or files identified by their URLs, but today they have a much more generic and abstract definition encompassing every thing or entity that can be identified, named, addressed or handled, in any way whatsoever, on the Web. In a RESTful Web service, requests made to a resource's URI will elicit a response that may be in XML, HTML, JSON or some other defined format. The response may confirm that some alteration has been made to the stored resource, and it may provide hypertext links to other related resources or collections of resources. Using HTTP, as is most common, the kind of operations available include those predefined by the HTTP verbs GET, POST, PUT, DELETE and so on. By making use of a stateless protocol and standard operations, REST systems aim for fast performance, reliability, and the ability to grow, by re-using components that can be managed and updated without affecting the system as a whole, even while it is running.
Contents
- History
- Architectural properties
- Architectural constraints
- Client Server
- Stateless
- Cacheable
- Layered system
- Code on demand optional
- Uniform interface
- Applied to Web services
- Relationship between URL and HTTP methods
- References
The term representational state transfer was introduced and defined in 2000 by Roy Fielding in his doctoral dissertation. Fielding used REST to design HTTP 1.1 and Uniform Resource Identifiers (URI). The term is intended to evoke an image of how a well-designed Web application behaves: it is a network of Web resources (a virtual state-machine) where the user progresses through the application by selecting links, such as /user/tom
, and operations such as GET or DELETE (state transitions), resulting in the next resource (representing the next state of the application) being transferred to the user for their use.
History
REST was defined by Roy Fielding in his 2000 PhD dissertation "Architectural Styles and the Design of Network-based Software Architectures" at UC Irvine. Fielding developed the REST architectural style in parallel with HTTP 1.1 of 1996–1999, based on the existing design of HTTP 1.0 of 1996.
In a retrospective look at the development of REST, Roy Fielding said:
Throughout the HTTP standardization process, I was called on to defend the design choices of the Web. That is an extremely difficult thing to do within a process that accepts proposals from anyone on a topic that was rapidly becoming the center of an entire industry. I had comments from well over 500 developers, many of whom were distinguished engineers with decades of experience, and I had to explain everything from the most abstract notions of Web interaction to the finest details of HTTP syntax. That process honed my model down to a core set of principles, properties, and constraints that are now called REST.
Architectural properties
The architectural properties affected by the constraints of the REST architectural style are:
Architectural constraints
There are six guiding constraints that define a RESTful system. These constraints restrict the ways that the server may process and respond to client requests so that, by operating within these constraints, the service gains desirable non-functional properties, such as performance, scalability, simplicity, modifiability, visibility, portability, and reliability. If a service violates any of the required constraints, it cannot be considered RESTful.
The formal REST constraints are as follows:
Client-Server
The first constraints added to our hybrid style are those of the client-server architectural style, described in Section 3.4.1. Separation of concerns is the principle behind the client-server constraints. By separating the user interface concerns from the data storage concerns, we improve the portability of the user interface across multiple platforms and improve scalability by simplifying the server components. Perhaps most significant to the Web, however, is that the separation allows the components to evolve independently, thus supporting the Internet-scale requirement of multiple organizational domains.
Stateless
The client–server communication is constrained by no client context being stored on the server between requests. Each request from any client contains all the information necessary to service the request, and session state is held in the client. The session state can be transferred by the server to another service such as a database to maintain a persistent state for a period and allow authentication. The client begins sending requests when it is ready to make the transition to a new state. While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the next time the client chooses to initiate a new state-transition.
Cacheable
As on the World Wide Web, clients and intermediaries can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients from reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server interactions, further improving scalability and performance.
Layered system
A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by enabling load balancing and by providing shared caches. They may also enforce security policies.
Code on demand (optional)
Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as Java applets and client-side scripts such as JavaScript.
Uniform interface
The uniform interface constraint is fundamental to the design of any REST service. The uniform interface simplifies and decouples the architecture, which enables each part to evolve independently. The four constraints for this uniform interface are
Applied to Web services
Web service APIs that adhere to the REST architectural constraints are called RESTful APIs. HTTP-based RESTful APIs are defined with the following aspects:
http://api.example.com/resources/
Relationship between URL and HTTP methods
The following table shows how HTTP methods are typically used in a RESTful API:
The GET method is a safe method (or nullipotent), meaning that calling it produces no side-effects: retrieving or accessing a record does not change it. The PUT and DELETE methods are idempotent, meaning that the state of the system exposed by the API is unchanged no matter how many times the same request is repeated.
Unlike SOAP-based Web services, there is no "official" standard for RESTful Web APIs. This is because REST is an architectural style, while SOAP is a protocol. REST is not a standard in itself, but RESTful implementations make use of standards, such as HTTP, URI, JSON, and XML.