Puneet Varma (Editor)

Renewable energy in Iceland

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Renewable energy in Iceland

About 85% of total primary energy supply in Iceland is derived from domestically produced renewable energy sources. This is the world’s highest share of renewable energy in any national total energy budget.

Contents

In 2016, geothermal energy provided about 65% of primary energy, the share of hydropower was 20%, and the share of fossil fuels (mainly oil products for the transport sector) was 15%. In 2013, Iceland also became a producer of wind energy. The main use of geothermal energy is for space heating, with the heat being distributed to buildings through extensive district-heating systems. About 85% of all houses in Iceland are heated with geothermal energy.

In 2015, the total electricity consumption in Iceland was 18,798 GWh. Renewable energy provided almost 100% of electricity production, with about 73% coming from hydropower and 27% from geothermal power. Most of the hydropower plants are owned by Landsvirkjun (the National Power Company) which is the main supplier of electricity in Iceland. Iceland is the world’s largest green energy producer per capita and largest electricity producer per capita, with approximately 55,000 kWh per person per year. In comparison, the EU average is less than 6,000 kWh.

Geology

Iceland's unique geology allows it to produce renewable energy relatively cheaply, from a variety of sources. Iceland is located on the Mid-Atlantic Ridge, which makes it one of the most tectonically active places in the world. There are over 200 volcanoes located in Iceland and over 600 hot springs. There are over 20 high-temperature steam fields that are at least 150 °C [300 °F]; many of them reach temperatures of 250 °C. This is what allows Iceland to harness geothermal energy, and these steam fields are used for everything from heating houses to heating swimming pools. Hydropower is harnessed through glacial rivers and waterfalls, which are both plentiful in Iceland.

Hydrogen

Currently, imported oil fulfils most of Iceland's remaining energy needs. This cost has caused Iceland to focus on domestic, renewable energy. Bragi Arnason, a local professor, first proposed the idea of using hydrogen as a fuel source in Iceland during the 1970s, which is also when the oil crisis occurred. At that point in time this idea was considered untenable, but in 1999 Icelandic New Energy was established to govern the project of transitioning Iceland into the first hydrogen society by 2050. This followed a decision in 1998 by the Icelandic Parliament to convert vehicle and fishing fleets to hydrogen produced from renewable energy.

Iceland provides an ideal location to test the viability of hydrogen as a fuel source for the future, since it is a small country of only 320,000 people, with over 60% living in the capital, Reykjavík. The relatively small scale of the infrastructure will make it easier to transition the country from oil to hydrogen. There is also a plentiful supply of natural energy that can be harnessed to produce hydrogen in a renewable way, making it perfect for hydrogen production. Iceland is a participant in international hydrogen fuel research and development programs, and many countries are following the nation's progress with interest. However, these factors also make Iceland an advantageous market for electric vehicles. Because electric vehicles are four times more efficient, and less expensive than hydrogen vehicles, the country may switch to electric vehicles.

Iceland already converts its surplus electricity into exportable goods and hydrocarbon replacements. In 2002 it produced 2,000 tons of hydrogen gas by electrolysis—primarily for the production of ammonia for fertilizer.

ECTOS demonstration project

The first step towards becoming a hydrogen society was the ECTOS demonstration project, which ran from 2001 until August 2005 and was very successful. ECTOS (Ecological City TranspOrt System) involved three hydrogen fuel cell buses and one fuel station. Many international companies contributed to the project including Daimler Chrysler, who made the hydrogen fuel cell buses, and Shell which produced the hydrogen fuel station. The European Commission 5th framework programme sponsored the project.

The first hydrogen fuel station in Iceland opened in 2003 in Reykjavík. To avoid transportation difficulties hydrogen is produced on site using electrolysis to break down water into hydrogen and oxygen. All of the energy used to produce the hydrogen comes from Iceland’s renewable energies and the full cycle of energy, from the water to the hydrogen in the fuel cells, emits no CO2.

During the project the researchers studied the efficiency of using hydrogen as a fuel source. They examined the reliability of the fuel and effectiveness of hydrogen as a fuel in buses. They also studied the cost effectiveness of using hydrogen as a fuel source and how the process of introducing hydrogen into the country could be implemented. They examined specific areas like the ease of incorporating fuel stations and producing hydrogen, and the safety precautions involved with distributing and using hydrogen, a very explosive fuel.

HyFLEET:CUTE project

In January 2006 it was decided to continue testing the hydrogen buses as part of the HyFLEET:CUTE project, which spans 10 cities in Europe, China and Australia and which is sponsored by the European Commission's 6th framework programme. This project studies the long-term effects and most efficient ways of using hydrogen powered buses. The buses are run for longer periods of time and the durability of the fuel cell is compared to the combustion engine, which can theoretically last a lot longer. The project also compares the fuel efficiency of the original buses with new buses from different manufacturers that are supposed to be more fuel efficient.

The project ended in January 2007, and as a result of the research an improved bus prototype is expected in 2008. Details of further demonstrations involving private cars and a boat were expected in April 2007.

Other projects

Iceland has also begun many other projects involving hydrogen.

The EURO-HYPORT project is investigating the feasibility of exporting hydrogen fuel to Europe. Options include transporting the gas through an undersea pipeline or by boat, or exporting electricity generated in Iceland through a submarine cable.

Another project to build a hydrogen-powered H-ship started in February 2004 and is looking at the practicalities of using hydrogen as a fuel for Iceland's fishing fleet, one of the country's main industries. The project will identify and try to remove barriers that may prevent marine vehicles from using hydrogen as a fuel, such as problems caused by water and salt. It will also try to identify and remedy weakness within the fuel cell to ensure the protection of marine life. The H-ship project is a major step in the plan for Iceland to become the first country to phase out the use of fossil fuels. Government funding as well as private organizations such as the World Renewable Energy Congress are the primary sponsors of research in this sector.

Electricity generation from hydrogen

Electric cars with strategically located charging stations make a lot of sense for Iceland, where 75% of the country’s residents live within 37 miles of the capital city. Hydrogen cars are not expected to be mass-produced anywhere in the world until at least 2015, and with the first electric cars rolling off production lines in 2010, it will be faster to introduce electric vehicles. Iceland's 840-mile-long ring road could theoretically be covered with just 14 fast-charging stations.

Education and research

There are several educational institutions that offering education in Renewable Energy in Iceland on university level.

The University of Iceland is a progressive educational and scientific institution, renowned in the global scientific community for its research. It is a state university, situated in Reykjavík, the capital of Iceland. A modern, diversified and rapidly developing institution, the University of Iceland offers opportunities for study and research in almost 300 programmes spanning most fields of science and scholarship: Social Sciences, Health Sciences, Humanities, Sciences and Engineering. Some 9700 students are registered at UI and 1000 full-time employees.

Reykjavik University has the mission to create and communicate knowledge, in order to increase the competitiveness of individuals, firms and society as a whole, while at the same time enhancing the quality of life of their students and staff. The aim is to make Reykjavik University the centre for international research collaborations in Europe and across the Atlantic. The university consists of five academic schools: School of Law, School of Business, School of Health and Education, School of Computer Science and the School of Science and Engineering. Reykjavik University is a community of over 3000 students and over 500 full-time and part-time employees. About half of all instructors at RU are active in Icelandic industry, and about 10% are guest instructors from overseas.

Keilir, Atlantic center of excellence in Ásbrú next to the Keflavik International Airport, offer a multidisciplinary BSc. programs in energy technology in co-operation with the University of Iceland. The school also runs a state-of-the-art research center in energy sciences.

RES - The School for Renewable Energy Science, located in Akureyri North Iceland is offering an intensive and unique interdisciplinary research oriented one-year graduate (M.Sc.) programme in Renewable Energy Science. The program is offered in cooperation with University of Iceland and University of Akureyri, as well as in partnership with a number of leading technical universities around the world. In 2009 the school offers four specializations of study: 1. Geothermal Energy; 2. Fuel Cell Systems and Hydrogen; 3. Biofuels and Bioenergy; and 4. Energy Systems & Policies. RES offers also summer programs and individual courses in the field.

Iceland School of Energy located in Reykjavik, offers MSc. Studies in the field of Renewable Energy Engineering, Policy and Science. The foundation for the ISE was laid in April 2007 when Reykjavik Energy, the University of Iceland and Reykjavik University signed an agreement on establishing an international graduate program on sustainable energy. ISE is an interdisciplinary school in higher education for engineers and scientists, has a focus on global environmental protection and sustainable use of energy resources and creates leading experts in management, design and research in utilization of sustainable energy. The unique expertise of all its founding partners forms an excellent platform for the school to build on.

The largest research institution in renewable energy in the country is University of Iceland which is state university, founded in 1911 and situated in the heart of Reykjavík, the capital of Iceland. As a scientific institution is it renowned in the global scientific community for its research in renewable energy.

Another state university University of Akureyri, located in Akureyri in North Iceland, is also conducting various research in the field of renewable energy.

One of the main tasks of the National Energy Authority of Iceland is to carry out energy research and provide consulting services related to energy development and energy utilization.

Several companies, public and private are conducting extensive research in the field of renewable energy.

Landsvirkjun the national electricity company of the Republic of Iceland, is both in research of hydro and geothermal as well and funding a great deal of research work in the field in the country.

The Icelandic Energy Portal is an independent information source on the Icelandic energy sector.

Iceland Geosurvey (ÍSOR) is a public consulting and research institute providing specialist services to the Icelandic power industry, dedicated mainly to geothermal and hydro research.

References

Renewable energy in Iceland Wikipedia


Similar Topics