Girish Mahajan (Editor)

Renewable energy in Denmark

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
RE as % of Gross Final Energy Consumption.
  
29.2% (2014)

Percentage of Electricity generated by RE.
  
60.4% (2015)

Target for above.
  
30.0% (2020)

Wind Power.
  
4.9 GW

Renewable energy in Denmark

RE generated / Total electricity generation.
  
17,562 / 30,615 GWh (2014)

Record % RE covered electricity consumption
  
138.7% (26/7/15 wind only)

Denmark is a world leading country in wind energy production and wind turbine production. In 2014 Denmark produced 57.4% of its net electricity generation from renewable energy sources. The Danish wind company Vestas Wind Systems A/S has expanded from its domestic base and by 2015 had a revenue of €8.423 billion, with more than 18,000 employees globally and manufacturing plants in Denmark, Germany, India, Italy, Romania, the United Kingdom, Spain, Sweden, Norway, Australia, China, and the United States (see Vestas link above for sources). Wind power alone produced 42.7% of Denmark's electricity production in 2014 and is expected to increase its production by nearly 80% in the years to 2024.

Contents

Denmark has a target of producing 30% of all its energy needs from RE energy sources by 2020, a considerable increase from the 17% it attained in 2005. By 2014 this figure had already reached 29.2% and was the fifth highest amongst the EU-28 countries. The country has ambitious renewable energy goals for the future, including using renewable energy for 100% of its energy needs in all sectors including transport by 2050.

In the heating sector the country has long used and continues to develop district heating (DH) networks. Hot water or steam is produced centrally and then distributed through a network of insulated pipes to high population areas. Houses within a district heating area have heat exchangers installed instead of boilers for their heating and hot water requirements. The heat exchanger keeps the two water systems separate and means that heat can be adjusted as with a familiar domestic boiler. One simple but important innovation in the district heating network was the development of internally insulated pipes. The two pipes taking and receiving the return of water are placed inside a much larger pipe and insulating material is set so as to fill the figure eight shaped void between the two smaller and the large pipe. In 2013 district heating supplied over 60% of all households in Denmark with heating and hot water. The development of district heating technology has led Denmark to become a world leader in industrial pump and thermostat designs and its products are used in many industries worldwide.

Cogeneration is also widely used. This is a process that extracts the waste heat produced when generating electricity. Power stations designed to do this are known as Combined Heat and Power (CHP) stations. CHP stations in Denmark are often sized to provide the heat required for the local district heating system. Thus CHP stations produce both electricity for the grid and heat for district heating systems. Heat can be stored in large industrial hot water tanks for several days allowing electricity and heat supply to be provided time independently from each other. By 2013 the use of CHP stations had reduced the overall energy consumption in Denmark by 11%.

Danish electricity generation has become increasingly decentralised with a move away from production in the large central power stations to many smaller, locally based and mostly CHP stations. Many of these smaller stations use locally sourced bio energy sources including straw and wood pellets.

Energy consumption and objectives.

*Preliminary data. 2015 data adjusted for climate variation and fuels for net electricity exports.

Renewable energy consumption more than quadrupled from 48 PJ in 1990 to 203 PJ in 2015. Whilst renewable energy consumption was rising between 1990 and 2013 gross energy consumption actually fell by 7%. Most of the fall can be attributed to a great increase in combined power and heat generation (CHP) and the growth in wind power. This has increased energy conversion efficiency, reducing conversion losses by 28% or 7% relative to gross energy consumption. Put simply smaller and decentralised CHP plants use fuels far more efficiently than older centralised power plants, and wind power has no fossil fuel to waste. Thus the growth of these two sources (10% during the period) has displaced fossil fuels by more than a one-to-one ratio. The use of Biofuels in local CHP plants has further displaced fossil fuel consumption. The figures in the table above show that whilst the reduction in fossil fuel use has been most pronounced in coal use, there has also been a significant reduction in oil and natural gas usage since 2000. Oil has fared better than the other fuels because it still dominates usage in the transport sector and alternative fuels and transport solutions are not yet widely deployed. The Danish Government has introduced the following targets for national energy policy:

  • Eliminating coal from power production by 2030.
  • Providing all electrical and heating from renewable sources by 2035.
  • Providing 100% of Denmark's energy requirements in electricity, heating and transport from renewable sources by 2050.
  • Energy consumption by sector

    All EU countries as well as Iceland and Norway submitted National Renewable Energy Action Plans (NREAPs) to outline the steps taken, and projected progress by each country between 2010 and 2020 to meet the Renewable Energy Directive. Each plan contains a detailed breakdown of each country's current renewable energy usage and plans for future developments. According to projections by the Danish submission in 2020 the gross final energy consumption in Denmark by sector breaks down as follows:

    Almost half of energy consumption (46.6%) is used in the heating and cooling sector. The heating and cooling sector (also known as the thermal sector) includes domestic heating and air conditioning, industrial processes such as furnaces and any use of heat generally. The next largest share is the transport sector at 33.6%, followed by the electricity sector at 19.8%. Total annual energy consumption is projected to be 16,419 ktoe (16.4 million tonnes of oil equivalent) by 2020. In order to meet Denmarks overall target for 30% use of renewable energy in Gross final energy consumption (4,904 ktoes) by 2020 (it was just 17% in 2005) targets have been set for each sector. Renewable energy use is expected to be 39.8% in the heating and cooling sector, 51.9% in the electricity sector and 10.1% in the transport sector.

    The energy measures above are gross final energy consumption. Another broader measure, primary energy consumption also includes energy used in the extraction of fuels (the energy sector) and energy lost in transformation (the transformation sector, i.e. converting heat to electricity in power plants or fuel energy to heat in heating plants) as well as gross final energy consumption for end users. In 2013 Denmark’s total final energy consumption was 607 PJ whilst its primary energy consumption was 763 PJ. Most of the approximately 25% difference is accounted for in losses in the transformation sector. These losses are likely to be most prevalent in thermal electricity sectors, thus the use of renewable electricity will reduce CO2 emissions and fuels lost in the energy and transformation sectors as well as those in final consumption. Denmark is one of the world’s most fuel efficient countries and the difference between the two measures is smaller than many other countries.

    Production by source

    In 2014 wind energy produced 42.7 percent of Denmark's net electricity generation, the largest share from any source and larger than non renewable generated electricity. Biofuels (wood, straw and biogas) and the biodegradable part of waste provided the next largest RE source at 12.7% of national generation. Solar power has grown significantly in recent years from a low base and provides a further 2% share.Hydroelectricity provided just 0.1% of net national generation but the country maintains strong links to its neighboring countries large hydroelectric reserves. Fossil fuels and other non renewable sources accounted for just 42.6% of Denmarks total net generation and continues to decline. Total RE generated electricity accounted for 57.4% of Denmark’s net national electricity generation in 2014.

    Growth of electricity generated by renewables

    * excludes internal consumption by plant. ** figures in italics include photovoltaics. *** includes biofuels and biodegrable fraction of waste.

    The proportion of total Danish electricity generated by renewables rose between 2007 and 2014 from 28.1% to 57.4%. Total renewable electricity generation grew from 10,392 GWh in 2007 to 17,562 GWh by 2014, a rise of 69%. Since 2007 most of the growth in RE electricity generation continues to be the result of growing wind power generation (accounting for +56.9% of total generation growth), thermal generation from RE fuels added an additional 6.5%, Solar power has also made an impact as a new power source of an additional 597 GWh (5.7%) since 2012.

    Reduction in fossil fuel generated electricity

    Renewable energy generation in Denmark increased from 10,392 GwH to 17,562 GWh between 2007 and 2014. Fossil fuel generation fell from 26,318 GWh to 12,405 GWh in 2014. Electricity generated from renewables first exceeded electricity from fossil fuels in 2012 and again in 2014.

    So how does a country which generates the largest share of its electricity needs from wind power cope on calm windless days? Denmark sees this challenge as an opportunity to develop new solutions and in so doing is transforming its energy sector and upgrading its technological and engineering capability and is now exporting these worldwide. One of the ways the country manages is by exporting electricity on days when wind production is very high (Some days Denmark produces more electricity from wind power alone then the entire country requires). Much of the power is exported and stored in Norwegian and Swedish hydroelectric systems via the system of pumped storage (storing power for future use by pumping reservoir levels up higher). On calm days the power can be reimported. The country also imports and exports electricity to Germany and across the Nordic region which moves power to where it is most in demand given production conditions on each day. As electricity can be transported thousands of kilometres with only a few percentage point transmission losses the load and variability can be spread across a wider and more stable geographic area. These long distance transmission lines are being upgraded across both the Nordic region and more widely across Europe.

    The country has also developed power plants which can increase their output much more rapidly than traditional ones to respond to fluctuating production from wind sources. Many of these plants are the many smaller and dispersed CHP power plants across the country. The production and dispersion of electricity across Denmark, the Nordic region and Germany can be viewed in real time on the Energinet.dk website. The site illustrates wind and power production, electricity imports and exports, and the contribution made by CHP plants to both district heating and stabilising electricity production. The link to this site is here Energinet.dk.

    Heating and cooling sector

    According to the energy Progress Reports submitted by EU member states (as well as Norway and Iceland) to the European Commission, by 2014 renewable energy provided 38.4% of the energy consumed in the heating sector. RE in the heating sector is overwhelmingly provided by biomass, including straw, wood, bio-oil and biodegradable waste producing about 35% of the sector’s total consumption. The next largest share was provided by heat pumps at around 2.6% of the total. Solar thermal produced just under a half percentage share whilst geothermal heat produced a trace contribution. Renewable energy in the heating sector consists of sources consumed independently as well as their contribution to district heating networks. In 2008 about 40% of households gross final energy consumption for domestic heating came from district heating and 65% of consumption for the heating of commercial and public sector buildings. By 2013 the figure for households using district heating had grown to 60%.

    In 2014 combined heat and power plants produced 68.7% of the heat for district heating networks in Denmark (as well as 61% of electricity power produced by thermal plants). In the same year biomass, waste and biogas provided the fuel for 18.3%, 20.8% and 0.9% of heat produced in CHP plants, in heat only plants the figurse were 13.1%, 2% and 0.3% respectively whilst bio oil provided 0.6% of heat. Solar thermal, heat pumps and electric boilers also provided heat only plants with 0.6% and 0.4% of their production.

    The 2009 NREAP report identified new and ongoing ways to promote the use of renewable energy in the heating and cooling sector and amongst these included the following. Tax exemption for RE heating and cooling producers. Building regulations and information initiatives were identified to increase energy efficiency across targeted at both the building sector and consumers both public and private. Regulations governing the energy efficient cooling of buildings under local authority control has been in place since 2008. A scrappage scheme for those using oil fired boilers to run central heating was planned for March 2010 to reduce CO2 output and increase the take up of district heating and RE installations. Building regulations were in force to promote energy savings.

    Transport sector

    In 2014 renewable energy provided 5.67% of total final energy consumption in the transport sector. The largest source was from biodiesel followed some by bioethanol. Renewable electricity also made a contribution to the sector but this was smaller in 2014 than those from biofuels. In 2008 the government’s “Green Transport” proposal announced that the upward trend in CO2 emissions from transport must be halted. The political agreement “A Green Transport Policy” proposed measures to reduce emissions including the strengthening of public transport and encouraging greater utilisation and efficiency of existing vehicles. Preparations were made for a greener approach to vehicle taxation, including tax exemption for electric vehicles up to 2015. The Ministry for Transport also established the “Centre for Green Transport” to carry out research into energy efficient transport solutions. The EDTTP act was also cited as having established the Energy Technology Development and Demonstration Programme to research into solutions including biofuels and intelligent electricity.

    According to the 2009 NREAP report biofuels were expected to provide the main source of RE in the transport sector rising from 1.3 PJ in 2010 to 10.9PJ in 2020. Renewable electricity was expected to make up the minor share rising from 0.5 PJ to 1.2PJ over the period for use in electric vehicles and trains.

    Total electric vehicle sales in Denmark in 2015 were 4,762 units representing 2.29% of total car sales with the TESLA model S having a surge of sales at 2,736 units in a rush to beat tax exemptions.

    Targets

    *Transport consumption as defined in Article 3 (4) (a) of Directive 2009/28/EC, renewable electricity in motor transport counts 2.5 x value.

    The table above shows the expected trajectory for shares of renewable energy in the three sectors as well as the overall target trajectory. Overall between 2005 and 2020 renewable energy sources are expected to rise from 16.5% to 30% of total energy use.

    Progress

    The above table shows the actual overall and by sector renewable energy consumption achieved (PJ) in the years 2013-2014 as outlined in Denmark;s NREAP progress report.According to the Progress Report submitted by Denmark to the European Commission by 2014 Denmark had achieved a 28.45% share of overall renewable energy use across all energy uses. This included a 44.48% share in the electricity sector, a 38.4% share in the heating and cooling sector and a 5.67% share in the transport sector for 2014. Overall Denmark is running well ahead of its predicted trajectory and was close to achieving its 2020 as early as 2014. Total renewable energy consumption is a little below predicted levels at 177.8 PJ but this is more than compensated by a fall in overall energy consumption partly as a result of efficiency gains.

    References

    Renewable energy in Denmark Wikipedia