![]() | ||
The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect), when taking into account effects described by the special theory of relativity.
Contents
- Visualization
- Analogy
- Motion along the line of sight
- Systematic derivation for inertial observers
- Transverse Doppler effect
- Reciprocity
- Experimental verification
- Motion in an arbitrary direction
- Doppler effect on intensity
- Accelerated motion
- References
The relativistic Doppler effect is different from the non-relativistic Doppler effect as the equations include the time dilation effect of special relativity and do not involve the medium of propagation as a reference point. They describe the total difference in observed frequencies and possess the required Lorentz symmetry.
Visualization
In Diagram 2, the blue point represents the observer, and the arrow represents the observer's velocity vector relative to its surroundings. When the observer is stationary, the x,y-grid appears yellow and the y-axis appears as a black vertical line. Increasing the observer's velocity to the right shifts the colors and the aberration of light distorts the grid. When the observer looks forward (right on the grid), points appear green, blue, and violet (blueshift) and grid lines appear farther apart. If the observer looks backward (left on the grid), then points appear red (redshift) and lines appear closer together. The grid has not changed, but its appearance for the observer has.
Diagram 3 illustrates that the grid distortion is a relativistic optical effect, separate from the underlying Lorentz contraction which is the same for an object moving toward an observer or away.
Analogy
Understanding relativistic Doppler effect requires understanding the Doppler effect, time dilation, and the aberration of light. As a simple analogy of the Doppler effect, consider two people playing catch. Imagine that a stationary pitcher tosses one ball each second (1 Hz) at one meter per second to a catcher who is standing still. The stationary catcher will receive one ball per second (1 Hz). Then the catcher walks away from the pitcher at 0.5 meters per second and catches a ball every 2 seconds (0.5 Hz). Finally, the catcher walks towards the pitcher at 0.5 meters per second and catches three balls every two seconds (1.5 Hz). The same would be true if the pitcher moved toward or away from the catcher. By analogy, the relativistic Doppler effect shifts the frequency of light as the emitter or observer moves toward or away from the other.
To understand the aberration effect, again imagine two people playing catch on two parallel conveyor belts (moving sidewalks) moving in opposite direction. The pitcher must aim differently depending on the speed and the spacing of the belts, and where the catcher is. The catcher will see the balls coming at a different angle than the pitcher chose to throw them. These angle changes depend on: 1) the instantaneous angle between the pitcher-catcher line and the relative velocity vector, and 2) the pitcher-catcher velocity relative to the speed of the ball. By analogy, the aberration of light depends on: 1) the instantaneous angle between the emitter-observer line and the relative velocity vector, and 2) the emitter-observer velocity relative to the speed of light.
Motion along the line of sight
Assume the observer and the source are moving away from each other with a relative velocity
The wavefront moves with velocity
where
Due to the relativistic time dilation, the observer will measure this time to be
where
is the Lorentz factor. The corresponding observed frequency is
The ratio
is called the Doppler factor of the source relative to the observer. (This terminology is particularly prevalent in the subject of astrophysics: see relativistic beaming.)
The corresponding wavelengths are related by
and the resulting redshift
can be written as
In the non-relativistic limit (when
corresponding to the classical Doppler effect.
Systematic derivation for inertial observers
Let us repeat the derivation more systematically in order to show how the Lorentz equations can be used explicitly to derive a relativistic Doppler shift equation for waves that themselves are not relativistic.
Let there be two inertial frames of reference,
See velocity-addition formula, where
The derivation begins with what the observer in
The period between the pulses as measured by the
using the Lorentz equation for the velocities, above. Thus, the period between the pulses that the observer in
Replacing
Ignoring the relativistic effects by taking
For electromagnetic radiation where
or in terms of wavelength:
where
For electromagnetic radiation, the limit to classical mechanics,
Transverse Doppler effect
The transverse Doppler effect is the nominal redshift or blueshift predicted by special relativity that occurs when the emitter and receiver are at the point of closest approach. Light emitted at closest approach in the source frame will be blueshifted at the receiver. Light received at closest approach in the receiver frame will be redshifted relative to its source frequency.
Assuming the objects are not accelerated, light emitted when the objects are closest together will be received some time later. At reception, the amount of redshift will be
If the light is received when the objects are closest together, then it was emitted some time earlier. At reception, the amount of blueshift will be
Classical theory does not make a specific prediction for either of these two cases, as the shift depends on the motions relative to the medium.
The transverse Doppler effect is a consequence of the relativistic Doppler effect.
In the frame of the receiver, θ0 represents the angle between the direction of the emitter at emission, and the observed direction of the light at reception. In the case when θ0 = π/2, the light was emitted at the moment of closest approach, and one obtains the transverse redshift
The transverse Doppler effect is one of the main novel predictions of the special theory. As Einstein put it in 1907: according to special relativity the moving object's emitted frequency is reduced by the Lorentz factor, so that the received frequency is reduced by the same factor.
Reciprocity
Sometimes the question arises as to how the transverse Doppler effect can lead to a redshift as seen by the "observer" whilst another observer moving with the emitter would also see a redshift of light sent (perhaps accidentally) from the receiver.
It is essential to understand that the concept "transverse" is not reciprocal. Each participant understands that when the light reaches them transversely as measured in terms of that person's rest frame, the other had emitted the light afterward as measured in the other person's rest frame. In addition, each participant measures the other's frequency as reduced ("time dilation"). These effects combined make the observations fully reciprocal, thus obeying the principle of relativity.
Experimental verification
In practice, experimental verification of the transverse effect usually involves looking at the longitudinal changes in frequency or wavelength due to motion for approach and recession: by comparing these two ratios together we can rule out the relationships of "classical theory" and prove that the real relationships are "redder" than those predictions. The transverse Doppler shift is central to the interpretation of the peculiar astrophysical object SS 433.
The first longitudinal experiments were carried out by Herbert E. Ives and Stilwell in (1938), and many other longitudinal tests have been performed since with much higher precision. Also a direct transverse experiment has verified the redshift effect for a detector actually aimed at 90 degrees to the object.
Motion in an arbitrary direction
If, in the reference frame of the observer, the source is moving away with velocity
In the particular case when
Due to the finite speed of light, the light ray (or photon, if you like) perceived by the observer as coming at angle
Therefore, Eq. (1) can be rewritten as
For example, a photon emitted at the right angle in the reference frame of the emitter (
In the non-relativistic limit, both formulæ (1) and (2) give
Doppler effect on intensity
The Doppler effect (with arbitrary direction) also modifies the perceived source intensity: this can be expressed concisely by the fact that source strength divided by the cube of the frequency is a Lorentz invariant (here, "source strength" refers to spectral intensity in frequency, i.e., power per unit solid angle and per unit frequency, expressed in watts per steradian per hertz; for spectral intensity in wavelength, the cube should be replaced by a fifth power). This implies that the total radiant intensity (summing over all frequencies) is multiplied by the fourth power of the Doppler factor for frequency.
As a consequence, since Planck's law describes the black body radiation as having a spectral intensity in frequency proportional to
Accelerated motion
For general accelerated motion, or when the motions of the source and receiver are analyzed in an arbitrary inertial frame, the distinction between source and receiver motion must again be taken into account.
The Doppler shift when observed from an arbitrary inertial frame:
where:
If
This is the classical Doppler effect multiplied by the ratio of the receiver and source Lorentz factors.
Due to the possibility of refraction, the light's direction at emission is generally not the same as its direction at reception. In refractive media, the light's path generally deviates from the straight distance between the points of emission and reception. The Doppler effect depends on the component of the emitter's velocity parallel to the light's direction at emission, and the component of the receiver's velocity parallel to the light's direction at absorption. This does not contradict Special Relativity.
The transverse Doppler effect can be analyzed from a reference frame where the source and receiver have equal and opposite velocities. In such a frame the ratio of the Lorentz factors is always 1, and all Doppler shifts appear to be classical in origin. In general, the observed frequency shift is an invariant, but the relative contributions of time dilation and the Doppler effect are frame dependent.