Samiksha Jaiswal (Editor)

Reionization

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Reionization

In Big Bang cosmology, reionization is the process that reionized the matter in the universe after the "dark ages", and is the second of two major phase transitions of gas in the universe. As the majority of baryonic matter is in the form of hydrogen, reionization usually refers to the reionization of hydrogen gas. The primordial helium in the universe experienced the same phase changes, but at different points in the history of the universe, and is usually referred to as helium reionization.

Contents

Background

The first phase change of hydrogen in the universe was recombination, which occurred at a redshift z = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of electrons and protons to form neutral hydrogen was higher than the reionization rate. The universe was opaque before the recombination, due to the scattering of photons (of all wavelengths) off free electrons (and, to a significantly lesser extent, free protons), but it became increasingly transparent as more electrons and protons combined to form neutral hydrogen atoms. While the electrons of neutral hydrogen can absorb photons of some wavelengths by rising to an excited state, a universe full of neutral hydrogen will be relatively opaque only at those absorbed wavelengths, but transparent throughout most of the spectrum. The Dark Ages of the universe start at that point, because there were no light sources other than the gradually redshifting cosmic background radiation.

The second phase change occurred once objects started to condense in the early universe that were energetic enough to re-ionize neutral hydrogen. As these objects formed and radiated energy, the universe reverted from being neutral, to once again being an ionized plasma. This occurred between 150 million and one billion years after the Big Bang (at a redshift 6 < z < 20). At that time, however, matter had been diffused by the expansion of the universe, and the scattering interactions of photons and electrons were much less frequent than before electron-proton recombination. Thus, a universe full of low density ionized hydrogen will remain transparent, as is the case today.

Detection methods

Looking back so far in the history of the universe presents some observational challenges. There are, however, a few observational methods for studying reionization.

Quasars and the Gunn-Peterson trough

One means of studying reionization uses the spectra of distant quasars. Quasars release an extraordinary amount of energy, meaning they are among the brightest objects in the universe. As a result, some quasars are detectable from as far back as the epoch of reionization. Quasars also happen to have relatively uniform spectral features, regardless of their position in the sky or distance from the Earth. Thus it can be inferred that any major differences between quasar spectra will be caused by the interaction of their emission with atoms along the line of sight. For wavelengths of light at the energies of one of the Lyman transitions of hydrogen, the scattering cross-section is large, meaning that even for low levels of neutral hydrogen in the intergalactic medium (IGM), absorption at those wavelengths is highly likely.

For nearby objects in the universe, spectral absorption lines are very sharp, as only photons with energies just sufficient to cause an atomic transition can cause that transition. However, the distances between quasars and the telescopes which detect them are large, which means that the expansion of the universe causes light to undergo noticeable redshifting. This means that as light from the quasar travels through the IGM and is redshifted, wavelengths which had been above the Lyman Alpha limit are stretched, and will in effect begin to fill in the Lymann absorption band. This means that instead of showing sharp spectral absorption lines, a quasar's light which has traveled through a large, spread out region of neutral hydrogen will show a Gunn-Peterson trough.

The redshifting for a particular quasar provides temporal (time) information about reionization. Since an object's redshift corresponds to the time at which it emitted the light, it is possible to determine when reionization ended. Quasars below a certain redshift (closer in space and time) do not show the Gunn-Peterson trough (though they may show the Lyman-alpha forest), while quasars emitting light prior to reionization will feature a Gunn-Peterson trough. In 2001, four quasars were detected (by the Sloan Digital Sky Survey) with redshifts ranging from z = 5.82 to z = 6.28. While the quasars above z = 6 showed a Gunn-Peterson trough, indicating that the IGM was still at least partly neutral, the ones below did not, meaning the hydrogen was ionized. As reionization is expected to occur over relatively short timescales, the results suggest that the universe was approaching the end of reionization at z = 6. This, in turn, suggests that the universe must still have been almost entirely neutral at z > 10.

CMB anisotropy and polarization

The anisotropy of the cosmic microwave background on different angular scales can also be used to study reionization. Photons undergo scattering when there are free electrons present, in a process known as Thomson scattering. However, as the universe expands, the density of free electrons will decrease, and scattering will occur less frequently. In the period during and after reionization, but before significant expansion had occurred to sufficiently lower the electron density, the light that composes the CMB will experience observable Thomson scattering. This scattering will leave its mark on the CMB anisotropy map, introducing secondary anisotropies (anisotropies introduced after recombination). The overall effect is to erase anisotropies that occur on smaller scales. While anisotropies on small scales are erased, polarization anisotropies are actually introduced because of reionization. By looking at the CMB anisotropies observed, and comparing with what they would look like had reionization not taken place, the electron column density at the time of reionization can be determined. With this, the age of the universe when reionization occurred can then be calculated.

The Wilkinson Microwave Anisotropy Probe allowed that comparison to be made. The initial observations, released in 2003, suggested that reionization took place from 11 <z < 30. This redshift range was in clear disagreement with the results from studying quasar spectra. However, the three year WMAP data returned a different result, with reionization beginning at z = 11 and the universe ionized by z = 7. This is in much better agreement with the quasar data.

Results in 2013 from Planck mission, in combination with data from WMAP polarization, small-scale CMB experiments, and BAO measurements yield an instantaneous reionization redshift of z = 11.3 ± 1.1.

The parameter usually quoted here is τ, the "optical depth to recombination," or alternatively, zre, the redshift of reionization, assuming it was an instantaneous event. While this is unlikely to be physical, since reionization was very likely not instantaneous, zre provides an estimate of the mean redshift of reionization.

21-cm line

Even with the quasar data roughly in agreement with the CMB anisotropy data, there are still a number of questions, especially concerning the energy sources of reionization and the effects on, and role of, structure formation during reionization. The 21-cm line in hydrogen is potentially a means of studying this period, as well as the "dark ages" that preceded reionization. The 21-cm line occurs in neutral hydrogen, due to differences in energy between the spin triplet and spin singlet states of the electron and proton. This transition is forbidden, meaning it occurs extremely rarely. The transition is also highly temperature dependent, meaning that as objects form in the "dark ages" and emit Lyman-alpha photons that are absorbed and re-emitted by surrounding neutral hydrogen, it will produce a 21-cm line signal in that hydrogen through Wouthuysen-Field coupling. By studying 21-cm line emission, it will be possible to learn more about the early structures that formed. While there are currently no results, there are a few projects underway which hope to make headway in this area in the near future, such as the Precision Array for Probing the Epoch of Reionization (PAPER), Low Frequency Array (LOFAR), Murchison Widefield Array (MWA), Giant Metrewave Radio Telescope (GMRT), the Dark Ages Radio Explorer (DARE) mission, and the Large-Aperture Experiment to Detect the Dark Ages (LEDA).

References

Reionization Wikipedia