Block length n Distance n − k + 1 | Message length | |
Hierarchy Linear block codePolynomial codeCyclic codeBCH codeReed–Solomon code Alphabet size q = p ≥ n (p prime)Often n = q − 1. |
Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, the most prominent of which include consumer technologies such as CDs, DVDs, Blu-ray Discs, QR Codes, data transmission technologies such as DSL and WiMAX, broadcast systems such as DVB and ATSC, and storage systems such as RAID 6. They are also used in satellite communication.
Contents
- History
- Data storage
- Bar code
- Data transmission
- Space transmission
- Constructions
- Reed Solomons original view The codeword as a sequence of values
- Simple encoding procedure The message as a sequence of coefficients
- Systematic encoding procedure The message as an initial sequence of values
- Theoretical decoding procedure
- The BCH view The codeword as a sequence of coefficients
- Systematic encoding procedure
- Duality of the two views discrete Fourier transform
- Remarks
- Properties
- Error correction algorithms
- PetersonGorensteinZierler decoder
- Syndrome decoding
- Error locators and error values
- Error locator polynomial
- Obtain the error locators from the error locator polynomial
- Calculate the error locations
- Calculate the error values
- Fix the errors
- BerlekampMassey decoder
- Example
- Euclidean decoder
- Decoder using discrete Fourier transform
- Decoding beyond the error correction bound
- Soft decoding
- Encoder
- Decoder
- References
In coding theory, the Reed–Solomon code belongs to the class of non-binary cyclic error-correcting codes. The Reed–Solomon code is based on univariate polynomials over finite fields.
It is able to detect and correct multiple symbol errors. By adding t check symbols to the data, a Reed–Solomon code can detect any combination of up to t erroneous symbols, or correct up to ⌊t/2⌋ symbols. As an erasure code, it can correct up to t known erasures, or it can detect and correct combinations of errors and erasures. Furthermore, Reed–Solomon codes are suitable as multiple-burst bit-error correcting codes, since a sequence of b + 1 consecutive bit errors can affect at most two symbols of size b. The choice of t is up to the designer of the code, and may be selected within wide limits.
History
Reed–Solomon codes were developed in 1960 by Irving S. Reed and Gustave Solomon, who were then staff members of MIT Lincoln Laboratory. Their seminal article was titled "Polynomial Codes over Certain Finite Fields." (Reed & Solomon 1960). The original encoding scheme described in the Reed Solomon article used a variable polynomial based on the message to be encoded, which made decoding impractical for all but the simplest of cases. This was resolved by changing the encoding scheme to use a fixed polynomial known to both encoder and decoder. A practical decoder developed by Daniel Gorenstein and Neal Zierler was described in an MIT Lincoln Laboratory report by Zierler in January 1960 and later in a paper in June 1961. During the same period, work was also being done on BCH codes and Reed-Solomon codes were considered as a special class of BCH codes at the time. The Gorenstein-Zierler decoder and the related work on BCH codes are described in a book Error Correcting Codes by W. Wesley Peterson (1961).
An improved decoder was developed in 1969 by Elwyn Berlekamp and James Massey, and is since known as the Berlekamp–Massey decoding algorithm. Another improved decoder was developed in 1975 by Yasuo Sugiyama, based on the extended Euclidean algorithm.
In 1977, Reed–Solomon codes were implemented in the Voyager program in the form of concatenated error correction codes. The first commercial application in mass-produced consumer products appeared in 1982 with the compact disc, where two interleaved Reed–Solomon codes are used. Today, Reed–Solomon codes are widely implemented in digital storage devices and digital communication standards, though they are being slowly replaced by more modern low-density parity-check (LDPC) codes or turbo codes. For example, Reed–Solomon codes are used in the Digital Video Broadcasting (DVB) standard DVB-S, but LDPC codes are used in its successor, DVB-S2.
Data storage
Reed–Solomon coding is very widely used in mass storage systems to correct the burst errors associated with media defects.
Reed–Solomon coding is a key component of the compact disc. It was the first use of strong error correction coding in a mass-produced consumer product, and DAT and DVD use similar schemes. In the CD, two layers of Reed–Solomon coding separated by a 28-way convolutional interleaver yields a scheme called Cross-Interleaved Reed–Solomon Coding (CIRC). The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks with more than 2 byte errors. The decoded 28-byte blocks, with erasure indications, are then spread by the deinterleaver to different blocks of the (28,24) outer code. Thanks to the deinterleaving, an erased 28-byte block from the inner code becomes a single erased byte in each of 28 outer code blocks. The outer code easily corrects this, since it can handle up to 4 such erasures per block.
The result is a CIRC that can completely correct error bursts up to 4000 bits, or about 2.5 mm on the disc surface. This code is so strong that most CD playback errors are almost certainly caused by tracking errors that cause the laser to jump track, not by uncorrectable error bursts.
DVDs use a similar scheme, but with much larger blocks, a (208,192) inner code, and a (182,172) outer code.
Reed–Solomon error correction is also used in parchive files which are commonly posted accompanying multimedia files on USENET. The Distributed online storage service Wuala (discontinued in 2015) also used to make use of Reed–Solomon when breaking up files.
Bar code
Almost all two-dimensional bar codes such as PDF-417, MaxiCode, Datamatrix, QR Code, and Aztec Code use Reed–Solomon error correction to allow correct reading even if a portion of the bar code is damaged. When the bar code scanner cannot recognize a bar code symbol, it will treat it as an erasure.
Reed–Solomon coding is less common in one-dimensional bar codes, but is used by the PostBar symbology.
Data transmission
Specialized forms of Reed–Solomon codes, specifically Cauchy-RS and Vandermonde-RS, can be used to overcome the unreliable nature of data transmission over erasure channels. The encoding process assumes a code of RS(N, K) which results in N codewords of length N symbols each storing K symbols of data, being generated, that are then sent over an erasure channel.
Any combination of K codewords received at the other end is enough to reconstruct all of the N codewords. The code rate is generally set to 1/2 unless the channel's erasure likelihood can be adequately modelled and is seen to be less. In conclusion, N is usually 2K, meaning that at least half of all the codewords sent must be received in order to reconstruct all of the codewords sent.
Reed–Solomon codes are also used in xDSL systems and CCSDS's Space Communications Protocol Specifications as a form of forward error correction.
Space transmission
One significant application of Reed–Solomon coding was to encode the digital pictures sent back by the Voyager space probe.
Voyager introduced Reed–Solomon coding concatenated with convolutional codes, a practice that has since become very widespread in deep space and satellite (e.g., direct digital broadcasting) communications.
Viterbi decoders tend to produce errors in short bursts. Correcting these burst errors is a job best done by short or simplified Reed–Solomon codes.
Modern versions of concatenated Reed–Solomon/Viterbi-decoded convolutional coding were and are used on the Mars Pathfinder, Galileo, Mars Exploration Rover and Cassini missions, where they perform within about 1–1.5 dB of the ultimate limit, being the Shannon capacity.
These concatenated codes are now being replaced by more powerful turbo codes.
Constructions
The Reed–Solomon code is actually a family of codes, where every code is characterised by three parameters: an alphabet size q, a block length n, and a message length k, with k < n ≤ q. The set of alphabet symbols is interpreted as the finite field of order q, and thus, q has to be a prime power. In the most useful parameterizations of the Reed–Solomon code, the block length is usually some constant multiple of the message length, that is, the rate R = k/n is some constant, and furthermore, the block length is equal to or one less than the alphabet size, that is, n = q or n = q − 1.
Reed & Solomon's original view: The codeword as a sequence of values
There are different encoding procedures for the Reed–Solomon code, and thus, there are different ways to describe the set of all codewords. In the original view of Reed & Solomon (1960), every codeword of the Reed–Solomon code is a sequence of function values of a polynomial of degree less than k. One issue with this view is that decoding and checking for errors is not practical except for the simplest of cases. In order to obtain a codeword of the Reed–Solomon code, the message is interpreted as the description of a polynomial p of degree less than k over the finite field F with q elements. In turn, the polynomial p is evaluated at n distinct points
Since any two distinct polynomials of degree less than
While the number of different polynomials of degree less than k and the number of different messages are both equal to
In many contexts it is convenient to choose the sequence
Simple encoding procedure: The message as a sequence of coefficients
In the original construction of Reed & Solomon (1960), the message
As described above, the codeword is then obtained by evaluating
This function
This matrix is the transpose of a Vandermonde matrix over
Systematic encoding procedure: The message as an initial sequence of values
As mentioned above, there is an alternative way to map codewords
To compute this polynomial
This time, however, the first
Theoretical decoding procedure
Reed & Solomon (1960) described a theoretical decoder that corrected errors by finding the most popular message polynomial. The decoder only knows the set of values
The BCH view: The codeword as a sequence of coefficients
In this view, the sender again maps the message
The transmitter sends the
With this definition of the codewords, it can be immediately seen that a Reed–Solomon code is a polynomial code, and in particular a BCH code. The generator polynomial
Since Reed–Solomon codes are a special case of BCH codes, the practical decoders designed for BCH codes are applicable to Reed–Solomon codes: The receiver interprets the received word as the coefficients of a polynomial
If the remainder polynomial
Systematic encoding procedure
The above encoding procedure for the BCH view of Reed–Solomon codes is classical, but does not give rise to a systematic encoding procedure, i.e., the codewords do not necessarily contain the message as a subsequence.To remedy this fact, instead of sending
Formally, the construction is done by multiplying
Note that the remainder has degree at most
As a result, the codewords
Duality of the two views - discrete Fourier transform
At first sight, the two views of Reed–Solomon codes above seem very different. In the first definition, codewords in the set
The equivalence of the two definitions can be proved using the discrete Fourier transform. This transform, which exists in all finite fields as well as the complex numbers, establishes a duality between the coefficients of polynomials and their values. This duality can be approximately summarized as follows: Let
To be more precise, let
and assume
Using these facts, we have:
This shows that the two definitions are equivalent. However, the practical decoders described below require a generator polynomial known to the decoder, and view a codeword as a set of coefficients.
Remarks
Designers are not required to use the "natural" sizes of Reed–Solomon code blocks. A technique known as "shortening" can produce a smaller code of any desired size from a larger code. For example, the widely used (255,223) code can be converted to a (160,128) code by padding the unused portion of the source block with 95 binary zeroes and not transmitting them. At the decoder, the same portion of the block is loaded locally with binary zeroes. The Delsarte-Goethals-Seidel theorem illustrates an example of an application of shortened Reed–Solomon codes. In parallel to shortening, a technique known as puncturing allows omitting some of the encoded parity symbols.
Properties
The Reed–Solomon code is a [n, k, n − k + 1] code; in other words, it is a linear block code of length n (over F) with dimension k and minimum Hamming distance n − k + 1. The Reed–Solomon code is optimal in the sense that the minimum distance has the maximum value possible for a linear code of size (n, k); this is known as the Singleton bound. Such a code is also called a maximum distance separable (MDS) code.
The error-correcting ability of a Reed–Solomon code is determined by its minimum distance, or equivalently, by
For practical uses of Reed–Solomon codes, it is common to use a finite field
The Reed–Solomon code properties discussed above make them especially well-suited to applications where errors occur in bursts. This is because it does not matter to the code how many bits in a symbol are in error — if multiple bits in a symbol are corrupted it only counts as a single error. Conversely, if a data stream is not characterized by error bursts or drop-outs but by random single bit errors, a Reed–Solomon code is usually a poor choice compared to a binary code.
The Reed–Solomon code, like the convolutional code, is a transparent code. This means that if the channel symbols have been inverted somewhere along the line, the decoders will still operate. The result will be the inversion of the original data. However, the Reed–Solomon code loses its transparency when the code is shortened. The "missing" bits in a shortened code need to be filled by either zeros or ones, depending on whether the data is complemented or not. (To put it another way, if the symbols are inverted, then the zero-fill needs to be inverted to a one-fill.) For this reason it is mandatory that the sense of the data (i.e., true or complemented) be resolved before Reed–Solomon decoding.
Error correction algorithms
The decoders described below use the BCH view of the codeword as sequence of coefficients.
Peterson–Gorenstein–Zierler decoder
Daniel Gorenstein and Neal Zierler developed a practical decoder that was described in a MIT Lincoln Laboratory report by Zierler in January 1960 and later in a paper in June 1961. The Gorenstein-Zierler decoder and the related work on BCH codes are described in a book Error Correcting Codes by W. Wesley Peterson (1961).
Syndrome decoding
The transmitted message is viewed as the coefficients of a polynomial s(x) that is divisible by a generator polynomial g(x).
where α is a primitive root.
Since s(x) is divisible by generator g(x), it follows that
The transmitted polynomial is corrupted in transit by an error polynomial e(x) to produce the received polynomial r(x).
where ei is the coefficient for the i-th power of x. Coefficient ei will be zero if there is no error at that power of x and nonzero if there is an error. If there are ν errors at distinct powers ik of x, then
The goal of the decoder is to find the number of errors (ν), the positions of the errors (ik), and the error values at those positions (eik). From those, e(x) can be calculated and subtracted from r(x) to get the original message s(x).
The syndromes Sj are defined as
The advantage of looking at the syndromes is that the message polynomial drops out. Another possible way of calculating e(x) is using polynomial interpolation to find the only polynomial that passes through the points
Error locators and error values
For convenience, define the error locators Xk and error values Yk as:
Then the syndromes can be written in terms of the error locators and error values as
The syndromes give a system of n − k ≥ 2ν equations in 2ν unknowns, but that system of equations is nonlinear in the Xk and does not have an obvious solution. However, if the Xk were known (see below), then the syndrome equations provide a linear system of equations that can easily be solved for the Yk error values.
Consequently, the problem is finding the Xk, because then the leftmost matrix would be known, and both sides of the equation could be multiplied by its inverse, yielding Yk
Error locator polynomial
There is a linear recurrence relation that gives rise to a system of linear equations. Solving those equations identifies the error locations.
Define the error locator polynomial Λ(x) as
The zeros of Λ(x) are the reciprocals
Multiply both sides by
Sum for k = 1 to ν
This reduces to
This yields a system of linear equations that can be solved for the coefficients Λi of the error location polynomial:
The above assumes the decoder knows the number of errors ν, but that number has not been determined yet. The PGZ decoder does not determine ν directly but rather searches for it by trying successive values. The decoder first assumes the largest value for a trial ν and sets up the linear system for that value. If the equations can be solved (i.e., the matrix determinant is nonzero), then that trial value is the number of errors. If the linear system cannot be solved, then the trial ν is reduced by one and the next smaller system is examined. (Gill n.d., p. 35)
Obtain the error locators from the error locator polynomial
Use the coefficients Λi found in the last step to build the error location polynomial. The roots of the error location polynomial can be found by exhaustive search. The error locators are the reciprocals of those roots. Chien search is an efficient implementation of this step.
Calculate the error locations
Calculate ik by taking the log base a of Xk. This is generally done using a precomputed lookup table.
Calculate the error values
Once the error locators are known, the error values can be determined. This can be done by direct solution for Yk in the error equations given above, or using the Forney algorithm.
Fix the errors
Finally, e(x) is generated from ik and eik and then is subtracted from r(x) to get the sent message s(x).
Berlekamp–Massey decoder
The Berlekamp–Massey algorithm is an alternate iterative procedure for finding the error locator polynomial. During each iteration, it calculates a discrepancy based on a current instance of Λ(x) with an assumed number of errors e:
and then adjusts Λ(x) and e so that a recalculated Δ would be zero. The article Berlekamp–Massey algorithm has a detailed description of the procedure. In the following example, C(x) is used to represent Λ(x).
Example
Consider the Reed–Solomon code defined in GF(929) with α = 3 and t = 4 (this is used in PDF417 barcodes). The generator polynomial is
If the message polynomial is p(x) = 3 x2 + 2 x + 1, then the codeword is calculated as follows.
Errors in transmission might cause this to be received instead.
The syndromes are calculated by evaluating r at powers of α.
To correct the errors, first use the Berlekamp–Massey algorithm to calculate the error locator polynomial.
The final value of C is the error locator polynomial, Λ(x). The zeros can be found by trial substitution. They are x1 = 757 = 3−3 and x2 = 562 = 3−4, corresponding to the error locations. To calculate the error values, apply the Forney algorithm.
Subtracting e1x3 and e2x4 from the received polynomial r reproduces the original codeword s.
Euclidean decoder
Another iterative method for calculating both the error locator polynomial and the error value polynomial is based on Sugiyama's adaptation of the Extended Euclidean algorithm .
Define S(x), Λ(x), and Ω(x) for t syndromes and e errors:
The key equation is:
For t = 6 and e = 3:
The middle terms are zero due to the relationship between Λ and syndromes.
The extended Euclidean algorithm can find a series of polynomials of the form
Ai(x) S(x) + Bi(x) xt = Ri(x)
where the degree of R decreases as i increases. Once the degree of Ri(x) < t/2, then
Ai(x) = Λ(x)
Bi(x) = -Q(x)
Ri(x) = Ω(x).
B(x) and Q(x) don't need to be saved, so the algorithm becomes:
R−1 = xtR0 = S(x)A−1 = 0A0 = 1i = 0while degree of Ri >= t/2i = i + 1Q = Ri-2 / Ri-1Ri = Ri-2 - Q Ri-1Ai = Ai-2 - Q Ai-1to set low order term of Λ(x) to 1, divide Λ(x) and Ω(x) by Ai(0):
Λ(x) = Ai / Ai(0)Ω(x) = Ri / Ai(0)Ai(0) is the constant (low order) term of Ai.
Example
Using the same data as the Berlekamp Massey example above:
Λ(x) = A2 / 544 = 329 x2 + 821 x + 001Ω(x) = R2 / 544 = 546 x + 732Decoder using discrete Fourier transform
A discrete Fourier transform can be used for decoding. To avoid conflict with syndrome names, let c(x) = s(x) the encoded codeword. r(x) and e(x) are the same as above. Define C(x), E(x), and R(x) as the discrete Fourier transforms of c(x), e(x), and r(x). Since r(x) = c(x) + e(x), and since a discrete Fourier transform is a linear operator, R(x) = C(x) + E(x).
Transform r(x) to R(x) using discrete Fourier transform. Since the calculation for a discrete Fourier transform is the same as the calculation for syndromes, t coefficients of R(x) and E(x) are the same as the syndromes:
Use
Let v = number of errors. Generate E(x) using the known coefficients
Then calculate C(x) = R(x) - E(x) and take the inverse transform of C(x) to produce c(x).
Decoding beyond the error-correction bound
The Singleton bound states that the minimum distance d of a linear block code of size (n,k) is upper-bounded by n − k + 1. The distance d was usually understood to limit the error-correction capability to ⌊d/2⌋. The Reed–Solomon code achieves this bound with equality, and can thus correct up to ⌊(n − k + 1)/2⌋ errors. However, this error-correction bound is not exact.
In 1999, Madhu Sudan and Venkatesan Guruswami at MIT published "Improved Decoding of Reed–Solomon and Algebraic-Geometry Codes" introducing an algorithm that allowed for the correction of errors beyond half the minimum distance of the code. It applies to Reed–Solomon codes and more generally to algebraic geometric codes. This algorithm produces a list of codewords (it is a list-decoding algorithm) and is based on interpolation and factorization of polynomials over
Soft-decoding
The algebraic decoding methods described above are hard-decision methods, which means that for every symbol a hard decision is made about its value. For example, a decoder could associate with each symbol an additional value corresponding to the channel demodulator's confidence in the correctness of the symbol. The advent of LDPC and turbo codes, which employ iterated soft-decision belief propagation decoding methods to achieve error-correction performance close to the theoretical limit, has spurred interest in applying soft-decision decoding to conventional algebraic codes. In 2003, Ralf Koetter and Alexander Vardy presented a polynomial-time soft-decision algebraic list-decoding algorithm for Reed–Solomon codes, which was based upon the work by Sudan and Guruswami.
Encoder
Here we present a simple Matlab implementation for an encoder.
Decoder
Now the decoding part: