The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. This computation may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a graph, in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs).
Contents
Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior). It has also been extended to other applications.
The algorithm was initially published as a conference paper and later as a journal paper.
Mathematics
Although the algorithm was described in terms of random walks, the probability that each node sends a random walker to the seeds may be calculated analytically by solving a sparse, positive-definite system of linear equations with the graph Laplacian matrix, which we may represent with the variable
Assume that the image is represented by a graph, with each node
The nodes, edges and weights can then be used to construct the graph Laplacian matrix.
The random walker algorithm optimizes the energy
where
where the subscripts are used to indicate the portion of the graph Laplacian matrix
To incorporate likelihood (unary) terms into the algorithm, it was shown in that one may optimize the energy
for positive, diagonal matrices
The set of seeded nodes,
For example, if the likelihood/unary terms are used to incorporate a color model of the object, then
Algorithm interpretations
The random walker algorithm was initially motivated by labeling a pixel as object/background based on the probability that a random walker dropped at the pixel would first reach an object (foreground) seed or a background seed. However, there are several other interpretations of this same algorithm which have appeared in.
Circuit theory interpretations
There are well-known connections between electrical circuit theory and random walks on graphs. Consequently, the random walker algorithm has two different interpretations in terms of an electric circuit. In both cases, the graph is viewed as an electric circuit in which each edge is replaced by a passive linear resistor. The resistance,
In the first interpretation, each node associated with a background seed,
In the second interpretation, labeling a node as object or background by thresholding the random walker probability at 0.5 is equivalent to labeling a node as object or background based on the relative effective conductance between the node and the object or background seeds. Specifically, if a node has a higher effective conductance (lower effective resistance) to the object seeds than to the background seeds, then node is labeled as object. If a node has a higher effective conductance (lower effective resistance) to the background seeds than to the object seeds, then node is labeled as background.
Extensions
The traditional random walker algorithm described above has been extended in several ways:
Applications
Beyond image segmentation, the random walker algorithm or its extensions has been additionally applied to several problems in computer vision and graphics: