Kalpana Kalpana (Editor)

Radiative equilibrium

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Radiative equilibrium is one of the several requirements for thermodynamic equilibrium, but it can occur in the absence of thermodynamic equilibrium. There are various types of radiative equilibrium, which is itself a kind of dynamic equilibrium.

Contents

Definitions

There are several types of radiative equilibrium.

Prevost's definitions

An important early contribution was made by Pierre Prevost in 1791. Prevost considered that what is nowadays called the photon gas or electromagnetic radiation was a fluid that he called "free heat". Prevost proposed that free radiant heat is a very rare fluid, rays of which, like light rays, pass through each other without detectable disturbance of their passage. Prevost's theory of exchanges stated that each body radiates to, and receives radiation from, other bodies. The radiation from each body is emitted regardless of the presence or absence of other bodies.

Prevost in 1791 offered the following definitions (translated):

Absolute equilibrium of free heat is the state of this fluid in a portion of space which receives as much of it as it lets escape.

Relative equilibrium of free heat is the state of this fluid in two portions of space which receive from each other equal quantities of heat, and which moreover are in absolute equilibrium, or experience precisely equal changes.

Prevost went on to comment that "The heat of several portions of space at the same temperature, and next to one another, is at the same time in the two species of equilibrium."

Pointwise radiative equilibrium

Following Planck (1914), a radiative field is often described in terms of specific radiative intensity, which is a function of each geometrical point in a space region, at an instant of time. This is slightly different from Prevost’s mode of definition, which was for regions of space. It is also slightly conceptually different from Prevost’s definition: Prevost thought in terms of bound and free heat while today we think in terms of heat in kinetic and other dynamic energy of molecules, that is to say heat in matter, and the thermal photon gas. A detailed definition is given by Goody and Yung (1989). They think of the interconversion between thermal radiation and heat in matter. From the specific radiative intensity they derive F ν , the monochromatic vector flux density of radiation at each point in a region of space, which is equal to the time averaged monochromatic Poynting vector at that point (Mihalas 1978 on pages 9–11). They define the monochromatic volume-specific rate of gain of heat by matter from radiation as the negative of the divergence of the monochromatic flux density vector; it is a scalar function of the position of the point:

They define (pointwise) monochromatic radiative equilibrium by

They define (pointwise) radiative equilibrium by

This means that, at every point of the region of space that is in (pointwise) radiative equilibrium, the total, for all frequencies of radiation, interconversion of energy between thermal radiation and energy content in matter is nil. Pointwise radiative equilibrium is closely related to Prevost's absolute radiative equilibrium.

Mihalas and Weibel-Mihalas (1984) emphasise that this definition applies to a static medium, in which the matter is not moving. They also consider moving media.

Approximate pointwise radiative equilibrium

K. Schwarzschild in 1906 considered a system in which convection and radiation both operated but radiation was so much more efficient than convection that convection could be, as an approximation, neglected, and radiation could be considered predominant. This applies when the temperature is very high, as for example in a star, but not in a planet's atmosphere.

Chandrasekhar (1950, page 290) writes of a model of a stellar atmosphere in which "there are no mechanisms, other than radiation, for transporting heat within the atmosphere ... [and] there are no sources of heat in the atmosphere." This is hardly different from Schwarzschild's 1906 approximate concept, but is more precisely stated.

Radiative exchange equilibrium

Planck (1914, page 40) refers to a condition of thermodynamic equilibrium, in which "any two bodies or elements of bodies selected at random exchange by radiation equal amounts of heat with each other."

The term radiative exchange equilibrium can also be used to refer to two specified regions of space that exchange equal amounts of radiation by emission and absorption (even when the steady state is not one of thermodynamic equilibrium, but is one in which some sub-processes include net transport of matter or energy including radiation). Radiative exchange equilibrium is very nearly the same as Prevost's relative radiative equilibrium.

Approximate radiative exchange equilibrium

To a first approximation, an example of radiative exchange equilibrium is in the exchange of non-window wavelength thermal radiation between the land-and-sea surface and the lowest atmosphere, when there is a clear sky. As a first approximation (Swinbank 1963, Paltridge and Platt 1976, pages 139-140), in the non-window wavenumbers, there is zero net exchange between the surface and the atmosphere, while, in the window wavenumbers, there is simply direct radiation from the land-sea surface to space. A like situation occurs between adjacent layers in the turbulently mixed boundary layer of the lower troposphere, expressed in the so-called "cooling to space approximation", first noted by Rodgers and Walshaw (1966).

Global radiative equilibrium

Liou (2002, page 459) and other authors use the term global radiative equilibrium to refer to putative or theoretically conceived radiative exchange equilibrium globally between the earth and extraterrestrial space; such authors intend to mean that, in a putative or theoretically conceived steady state, incoming solar radiation absorbed by the earth and its atmosphere would be equal to outgoing longwave radiation from the earth and its atmosphere. Prevost would say then that the earth and its atmosphere regarded as a whole were in absolute radiative equilibrium. Some good texts, for example Satoh (2004), are rather cavalier here and simply refer to "radiative equilibrium", apparently not distinguishing between pointwise and global exchange radiative equilibrium. These usages assume that the supply of energy from chemical and nuclear reactions within the planet are negligibly small, the very opposite assumption to the one that motivates a contrary definition given hereunder.

The various global temperatures that may be theoretically conceived for any planet in general in putative or theoretically conceived global radiative equilibrium are of considerable interest. Such temperatures include the equivalent blackbody temperature of a planet, also called the effective radiation emission temperature of the planet. Related putative or theoretical concepts include the global-mean surface air temperature, which specifically considers the presence of an atmosphere.

A contrary definition

Cox and Giuli (1968/1984) use a definition quite contrary to all the above usages. They define 'radiative equilibrium' for a star, taken as a whole and not confining attention only to its atmosphere, when the rate of transfer as heat of energy from nuclear reactions plus viscosity to the microscopic motions of the material particles of the star is just balanced by the transfer of energy by electromagnetic radiation from the star to space. This is a way of using the words 'radiative equilibrium' that is contrary to the above-mentioned usages. They note that a star that is radiating energy to space cannot be in a steady state of temperature distribution unless there is a supply of energy, in particular they have in mind a steady supply of energy from nuclear reactions within the star, to support the radiation to space. Likewise the condition that is used for the above definition of pointwise radiative equilibrium, namely, h = 0 h ν d ν = 0 at every point of the region that is in radiative equilibrium, cannot hold throughout a star that is in a steady state of temperature distribution, without an energy supply. Cox and Giuli's definition allows them to say at the same time that a star is in a steady state of temperature distribution and is in 'radiative equilibrium'; they are assuming that all the radiative energy to space comes from within the star, the very opposite assumption to the one made by the above-mentioned users of the concept 'global radiative equilibrium'.

Mechanisms of radiative equilibrium

When there is enough matter in a region to allow molecular collisions to occur very much more often than creation or annihilation of photons, for radiation one speaks of local thermodynamic equilibrium. In this case, Kirchhoff's law of equality of radiative absorptivity and emissivity holds.

Two bodies in radiative exchange equilibrium, each in its own local thermodynamic equilibrium, have the same temperature and their radiative exchange complies with the Stokes-Helmholtz reciprocity principle.

References

Radiative equilibrium Wikipedia