![]() | ||
High-dimensional integrals in hundreds or thousands of variables occur commonly in finance. These integrals have to be computed numerically to within a threshold
Contents
- Monte Carlo and quasi Monte Carlo methods
- Theoretical explanations
- Isotropic integrals
- Open questions
- References
QMC is not a panacea for all high-dimensional integrals. A number of explanations have been proposed for why QMC is so good for financial derivatives. This continues to be a very fruitful research area.
Monte Carlo and quasi-Monte Carlo methods
Integrals in hundreds or thousands of variables are common in computational finance. These have to be approximated numerically to within an error threshold
where the evaluation points
Of course in computational practice pseudo-random points are used. Figure 1 shows the distribution of 500 pseudo-random points on the unit square.
Note there are regions where there are no points and other regions where there are clusters of points. It would be desirable to sample the integrand at uniformly distributed points. A rectangular grid would be uniform but even if there were only 2 grid points in each Cartesian direction there would be
It turns out there is a well-developed part of number theory which deals exactly with this desideratum. Discrepancy is a measure of deviation from uniformity so what one wants are low discrepancy sequences (LDS). Numerous LDS have been created named after their inventors, e.g.
Figure 2. gives the distribution of 500 LDS points.
The quasi-Monte Carlo (QMC) method is defined by
where the
The uniform distribution of LDS is desirable. But the worst case error of QMC is of order
where
Woźniakowski's 1991 paper showing the connection between average case complexity of integration and QMC led to new interest in QMC. Woźniakowski's result received considerable coverage in the scientific press . In early 1992, I. T. Vanderhoof, New York University, became aware of Woźniakowski's result and gave Woźniakowski's colleague J. F. Traub, Columbia University, a CMO with parameters set by Goldman Sachs. This CMO had 10 tranches each requiring the computation of a 360 dimensional integral. Traub asked a Ph.D. student, Spassimir Paskov, to compare QMC with MC for the CMO. In 1992 Paskov built a software system called FinDer and ran extensive tests. To the Columbia's research group's surprise and initial disbelief Paskov reported that QMC was always superior to MC in a number of ways. Details are given below. Preliminary results were presented by Paskov and Traub to a number of Wall Street firms in Fall 1993 and Spring 1994. The firms were initially skeptical of the claim that QMC was superior to MC for pricing financial derivatives. A January 1994 article in Scientific American by Traub and Woźniakowski discussed the theoretical issues and reported that "Preliminary results obtained by testing certain finance problems suggests the superiority of the deterministic methods in practice". In Fall 1994 Paskov wrote a Columbia University Computer Science Report which appeared in slightly modified form in 1997.
In Fall 1995 Paskov and Traub published a paper in the "Journal of Portfolio Management". They compared MC and two QMC methods. The two deterministic methods used Sobol and Halton points. Since better LDS were created later, no comparison will be made between Sobol and Halton sequences. The experiments drew the following conclusions regarding the performance of MC and QMC on the 10 tranche CMO:
To summarize, QMC beats MC for the CMO on accuracy, confidence level, and speed.
This paper was followed by reports on tests by a number of researchers which also led to the conclusion the QMC is superior to MC for a variety of high-dimensional finance problems. This includes papers by Caflisch and Morokoff (1996), Joy, Boyle, Tan (1996), Ninomiya and Tezuka (1996), Papageorgiou and Traub (1996), Ackworth, Broadie and Glasserman (1997), Kucherenko and co-authors
Further testing of the CMO was carried out by Anargyros Papageorgiou, who developed an improved version of the FinDer software system. The new results include the following:
Currently the highest reported dimension for which QMC outperforms MC is 65536. The software is the Sobol' Sequence generator SobolSeq65536 which generates Sobol' Sequences satisfying Property A for all dimensions and Property A' for the adjacent dimensions. SobolSeq generators outperform all other known generators both in speed and accuracy
Theoretical explanations
The results reported so far in this article are empirical. A number of possible theoretical explanations have been advanced. This has been a very research rich area leading to powerful new concepts but a definite answer has not been obtained.
A possible explanation of why QMC is good for finance is the following. Consider a tranche of the CMO mentioned earlier. The integral gives expected future cash flows from a basket of 30-year mortgages at 360 monthly intervals. Because of the discounted value of money variables representing future times are increasingly less important. In a seminal paper I. Sloan and H. Woźniakowski introduced the idea of weighted spaces. In these spaces the dependence on the successive variables can be moderated by weights. If the weights decrease sufficiently rapidly the curse of dimensionality is broken even with a worst case guarantee. This paper led to a great amount of work on the tractability of integration and other problems. A problem is tractable when its complexity is of order
On the other hand, effective dimension was proposed by Caflisch, Morokoff and Owen as an indicator of the difficulty of high-dimensional integration. The purpose was to explain the remarkable success of quasi-Monte Carlo (QMC) in approximating the very-high-dimensional integrals in finance. They argued that the integrands are of low effective dimension and that is why QMC is much faster than Monte Carlo (MC). The impact of the arguments of Caflisch et al. was great. A number of papers deal with the relationship between the error of QMC and the effective dimension .
It is known that QMC fails for certain functions that have high effective dimension. However, low effective dimension is not a necessary condition for QMC to beat MC and for high-dimensional integration to be tractable. In 2005, Tezuka exhibited a class of functions of
Isotropic integrals
QMC can also be superior to MC and to other methods for isotropic problems, that is, problems where all variables are equally important. For example, Papageorgiou and Traub reported test results on the model integration problems suggested by the physicist B. D. Keister
where
These are empirical results. In a theoretical investigation Papageorgiou proved that the convergence rate of QMC for a class of
This is with a worst case guarantee compared to the expected convergence rate of
In another theoretical investigation Papageorgiou presented sufficient conditions for fast QMC convergence. The conditions apply to isotropic and non-isotropic problems and, in particular, to a number of problems in computational finance. He presented classes of functions where even in the worst case the convergence rate of QMC is of order
where
But this is only a sufficient condition and leaves open the major question we pose in the next section.
Open questions
- Characterize for which high-dimensional integration problems QMC is superior to MC.
- Characterize types of financial instruments for which QMC is superior to MC.