Quantum refereed game in quantum information processing is a class of games in the general theory of quantum games. It is played between two players, Alice and Bob, and arbitrated by a referee. The referee outputs the pay-off for the players after interacting with them for a fixed number of rounds, while exchanging quantum information.
Contents
Definition
An
Mathematically, an n-turn referee is a measuring co-strategy
for complex Euclidean spaces
An
Individual quantum refereed games may place specific restrictions on strategies Alice and Bob can choose from. For example, in nonlocal games and pseudo-telepathy games, Alice and Bob are allowed to share entanglement but are forbidden from communicating. In general, such restrictions may not apply in quantum refereed games.
Zero-sum quantum refereed game
Similar to a classical zero-sum game, a zero-sum quantum refereed game is a quantum refereed game with the additional constraint
It is natural to assume Alice and Bob play independent strategies in a zero-sum quantum refereed game, since it cannot simultaneously be to both players' advantage to communicate directly with one another or to initially share an entanglement state {reference}. In this case, Alice's and Bob's strategy can be represented by
where
The combined strategy is then
Min-max theorem
Define
The optimal strategy for Alice then lies in the min-max problem
The above equality holds because
Quantum Interactive Proof with Competing Provers
A quantum interactive proof with two competing provers is a generalization of the single prover quantum interactive proof system. It can be modelled by zero-sum refereed games where Alice and Bob are the competing provers, and the referee is the verifier. The referee is assumed to be computationally bounded (polynomial size quantum circuit), whereas Alice and Bob can be computationally unrestricted. Alice, Bob and the referee receive a common string, and after fixed rounds of interactions (exchanging quantum information between the provers and the referee), the referee decides whether Alice wins or Bob wins.
Classical RG
In the classical setting, RG can be viewed as the following problem. Alice, Bob, and the referee is given some statement. Alice is trying to convince the referee that the statement is true while Bob is trying to convince the referee that the statement is false. The referee, who has limited computing power, will look at the proofs provided by Alice and Bob, ask them questions, and at the end of the day decide which player is correct (wins). The goal is for the referee to find an algorithm such that if the statement is true, there is a way for Alice to win with probability greater than 3/4, and if the statement is false, there is a way for Bob to win with probability greater than 3/4.
In the language of complexity theory, a promise problem
It is known that RG = EXP.
QRG
Quantum interactive proof systems with competing provers is a generalization of the classical RG where the referee is now restricted to polynomial-time generated quantum circuits and may exchange quantum information with the players. Therefore, QRG can be seen as the following problem. Alice, Bob and the referee is given some statement (it may involve a quantum state). Alice is trying to convince the referee the statement is true while Bob is trying to convince the referee the statement is false. The referee can ask the provers questions via quantum states, receive answers in quantum states, and analyse the received quantum states using a quantum computer. After communicating with Alice and Bob for
More formally, QRG denotes the complexity class for all promise problems having quantum refereed games defined as follows. Given a string
It turns out that QRG = EXP — allowing the referee to use quantum circuit and send or receive quantum information does not give the referee any extra power. EXP ⊆ QRG follows from the fact that EXP = RG ⊆ QRG. proved QRG ⊆ EXP by a formulation of QRG using semidefinite programs (SDP).
Semidefinite Program Formulation
For a quantum refereed game, at the end of all the interactions, the referee outputs one of the two possible outcomes
Setting
Using the same notation as the zero sum quantum refereed game as above, the referee is represented by operators
where
The referee outputs
For any given strategy
which, by the property of the strategy representation, is equal to
Therefore, to maximize Alice's winning probability,
This minimization problem can be expressed by the following SDP problem:
The dimension of the input and output space of this SPD is exponential (from the tensor product states) in