Referring to the diagram at the right, the six trigonometric functions of θ are:
  
    
      
        sin
        
        θ
        =
        
          
            
              o
              p
              p
              o
              s
              i
              t
              e
            
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
          
        
        =
        
          
            a
            h
          
        
      
    
    
  
  
    
      
        cos
        
        θ
        =
        
          
            
              a
              d
              j
              a
              c
              e
              n
              t
            
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
          
        
        =
        
          
            b
            h
          
        
      
    
    
  
  
    
      
        tan
        
        θ
        =
        
          
            
              o
              p
              p
              o
              s
              i
              t
              e
            
            
              a
              d
              j
              a
              c
              e
              n
              t
            
          
        
        =
        
          
            a
            b
          
        
      
    
    
  
  
    
      
        cot
        
        θ
        =
        
          
            
              a
              d
              j
              a
              c
              e
              n
              t
            
            
              o
              p
              p
              o
              s
              i
              t
              e
            
          
        
        =
        
          
            b
            a
          
        
      
    
    
  
  
    
      
        sec
        
        θ
        =
        
          
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
            
              a
              d
              j
              a
              c
              e
              n
              t
            
          
        
        =
        
          
            h
            b
          
        
      
    
    
  
  
    
      
        csc
        
        θ
        =
        
          
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
            
              o
              p
              p
              o
              s
              i
              t
              e
            
          
        
        =
        
          
            h
            a
          
        
      
    
    
  
The following identities are trivial algebraic consequences of these definitions and the division identity.
They rely on multiplying or dividing the numerator and denominator of fractions by a variable. Ie,
  
    
      
        
          
            a
            b
          
        
        =
        
          
            
              (
              
                
                  a
                  h
                
              
              )
            
            
              (
              
                
                  b
                  h
                
              
              )
            
          
        
      
    
    
  
  
    
      
        tan
        
        θ
        =
        
          
            
              o
              p
              p
              o
              s
              i
              t
              e
            
            
              a
              d
              j
              a
              c
              e
              n
              t
            
          
        
        =
        
          
            
              (
              
                
                  
                    o
                    p
                    p
                    o
                    s
                    i
                    t
                    e
                  
                  
                    h
                    y
                    p
                    o
                    t
                    e
                    n
                    u
                    s
                    e
                  
                
              
              )
            
            
              (
              
                
                  
                    a
                    d
                    j
                    a
                    c
                    e
                    n
                    t
                  
                  
                    h
                    y
                    p
                    o
                    t
                    e
                    n
                    u
                    s
                    e
                  
                
              
              )
            
          
        
        =
        
          
            
              sin
              
              θ
            
            
              cos
              
              θ
            
          
        
      
    
    
  
  
    
      
        cot
        
        θ
        =
        
          
            
              a
              d
              j
              a
              c
              e
              n
              t
            
            
              o
              p
              p
              o
              s
              i
              t
              e
            
          
        
        =
        
          
            
              (
              
                
                  
                    a
                    d
                    j
                    a
                    c
                    e
                    n
                    t
                  
                  
                    a
                    d
                    j
                    a
                    c
                    e
                    n
                    t
                  
                
              
              )
            
            
              (
              
                
                  
                    o
                    p
                    p
                    o
                    s
                    i
                    t
                    e
                  
                  
                    a
                    d
                    j
                    a
                    c
                    e
                    n
                    t
                  
                
              
              )
            
          
        
        =
        
          
            1
            
              tan
              
              θ
            
          
        
        =
        
          
            
              cos
              
              θ
            
            
              sin
              
              θ
            
          
        
      
    
    
  
  
    
      
        sec
        
        θ
        =
        
          
            1
            
              cos
              
              θ
            
          
        
        =
        
          
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
            
              a
              d
              j
              a
              c
              e
              n
              t
            
          
        
      
    
    
  
  
    
      
        csc
        
        θ
        =
        
          
            1
            
              sin
              
              θ
            
          
        
        =
        
          
            
              h
              y
              p
              o
              t
              e
              n
              u
              s
              e
            
            
              o
              p
              p
              o
              s
              i
              t
              e
            
          
        
      
    
    
  
  
    
      
        tan
        
        θ
        =
        
          
            
              o
              p
              p
              o
              s
              i
              t
              e
            
            
              a
              d
              j
              a
              c
              e
              n
              t
            
          
        
        =
        
          
            
              (
              
                
                  
                    
                      o
                      p
                      p
                      o
                      s
                      i
                      t
                      e
                    
                    ×
                    
                      h
                      y
                      p
                      o
                      t
                      e
                      n
                      u
                      s
                      e
                    
                  
                  
                    
                      o
                      p
                      p
                      o
                      s
                      i
                      t
                      e
                    
                    ×
                    
                      a
                      d
                      j
                      a
                      c
                      e
                      n
                      t
                    
                  
                
              
              )
            
            
              (
              
                
                  
                    
                      a
                      d
                      j
                      a
                      c
                      e
                      n
                      t
                    
                    ×
                    
                      h
                      y
                      p
                      o
                      t
                      e
                      n
                      u
                      s
                      e
                    
                  
                  
                    
                      o
                      p
                      p
                      o
                      s
                      i
                      t
                      e
                    
                    ×
                    
                      a
                      d
                      j
                      a
                      c
                      e
                      n
                      t
                    
                  
                
              
              )
            
          
        
        =
        
          
            
              (
              
                
                  
                    h
                    y
                    p
                    o
                    t
                    e
                    n
                    u
                    s
                    e
                  
                  
                    a
                    d
                    j
                    a
                    c
                    e
                    n
                    t
                  
                
              
              )
            
            
              (
              
                
                  
                    h
                    y
                    p
                    o
                    t
                    e
                    n
                    u
                    s
                    e
                  
                  
                    o
                    p
                    p
                    o
                    s
                    i
                    t
                    e
                  
                
              
              )
            
          
        
        =
        
          
            
              sec
              
              θ
            
            
              csc
              
              θ
            
          
        
      
    
    
  
Or
  
    
      
        tan
        
        θ
        =
        
          
            
              sin
              
              θ
            
            
              cos
              
              θ
            
          
        
        =
        
          
            
              (
              
                
                  1
                  
                    csc
                    
                    θ
                  
                
              
              )
            
            
              (
              
                
                  1
                  
                    sec
                    
                    θ
                  
                
              
              )
            
          
        
        =
        
          
            
              (
              
                
                  
                    csc
                    
                    θ
                    sec
                    
                    θ
                  
                  
                    csc
                    
                    θ
                  
                
              
              )
            
            
              (
              
                
                  
                    csc
                    
                    θ
                    sec
                    
                    θ
                  
                  
                    sec
                    
                    θ
                  
                
              
              )
            
          
        
        =
        
          
            
              sec
              
              θ
            
            
              csc
              
              θ
            
          
        
      
    
    
  
  
    
      
        cot
        
        θ
        =
        
          
            
              csc
              
              θ
            
            
              sec
              
              θ
            
          
        
      
    
    
  
Two angles whose sum is π/2 radians (90 degrees) are complementary. In the diagram, the angles at vertices A and B are complementary, so we can exchange a and b, and change θ to π/2 − θ, obtaining:
  
    
      
        sin
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        cos
        
        θ
      
    
    
  
  
    
      
        cos
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        sin
        
        θ
      
    
    
  
  
    
      
        tan
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        cot
        
        θ
      
    
    
  
  
    
      
        cot
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        tan
        
        θ
      
    
    
  
  
    
      
        sec
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        csc
        
        θ
      
    
    
  
  
    
      
        csc
        
        
          (
          π
          
            /
          
          2
          −
          θ
          )
        
        =
        sec
        
        θ
      
    
    
  
Identity 1:
  
    
      
        
          sin
          
            2
          
        
        
        (
        x
        )
        +
        
          cos
          
            2
          
        
        
        (
        x
        )
        =
        1
        
      
    
    
  
The following two results follow from this and the ratio identities. To obtain the first, divide both sides of 
  
    
      
        
          sin
          
            2
          
        
        
        (
        x
        )
        +
        
          cos
          
            2
          
        
        
        (
        x
        )
        =
        1
      
    
    
   by 
  
    
      
        
          cos
          
            2
          
        
        
        (
        x
        )
      
    
    
  ; for the second, divide by 
  
    
      
        
          sin
          
            2
          
        
        
        (
        x
        )
      
    
    
  .
  
    
      
        
          tan
          
            2
          
        
        
        (
        x
        )
        +
        1
         
        =
        
          sec
          
            2
          
        
        
        (
        x
        )
      
    
    
  
  
    
      
        1
         
        +
        
          cot
          
            2
          
        
        
        (
        x
        )
        =
        
          csc
          
            2
          
        
        
        (
        x
        )
      
    
    
  
Similarly
  
    
      
        1
         
        +
        
          cot
          
            2
          
        
        
        (
        x
        )
        =
        
          csc
          
            2
          
        
        
        (
        x
        )
      
    
    
  
  
    
      
        
          csc
          
            2
          
        
        
        (
        x
        )
        −
        
          cot
          
            2
          
        
        
        (
        x
        )
        =
        1
         
      
    
    
  
Identity 2:
The following accounts for all three reciprocal functions.
  
    
      
        
          csc
          
            2
          
        
        
        (
        x
        )
        +
        
          sec
          
            2
          
        
        
        (
        x
        )
        −
        
          cot
          
            2
          
        
        
        (
        x
        )
        =
        2
         
        +
        
          tan
          
            2
          
        
        
        (
        x
        )
      
    
    
  
Proof 2:
Refer to the triangle diagram above. Note that 
  
    
      
        
          a
          
            2
          
        
        +
        
          b
          
            2
          
        
        =
        
          h
          
            2
          
        
      
    
    
   by Pythagorean theorem.
  
    
      
        
          csc
          
            2
          
        
        
        (
        x
        )
        +
        
          sec
          
            2
          
        
        
        (
        x
        )
        =
        
          
            
              h
              
                2
              
            
            
              a
              
                2
              
            
          
        
        +
        
          
            
              h
              
                2
              
            
            
              b
              
                2
              
            
          
        
        =
        
          
            
              
                a
                
                  2
                
              
              +
              
                b
                
                  2
                
              
            
            
              a
              
                2
              
            
          
        
        +
        
          
            
              
                a
                
                  2
                
              
              +
              
                b
                
                  2
                
              
            
            
              b
              
                2
              
            
          
        
        =
        2
         
        +
        
          
            
              b
              
                2
              
            
            
              a
              
                2
              
            
          
        
        +
        
          
            
              a
              
                2
              
            
            
              b
              
                2
              
            
          
        
      
    
    
  
Substituting with appropriate functions -
  
    
      
        2
         
        +
        
          
            
              b
              
                2
              
            
            
              a
              
                2
              
            
          
        
        +
        
          
            
              a
              
                2
              
            
            
              b
              
                2
              
            
          
        
        =
        2
         
        +
        
          tan
          
            2
          
        
        
        (
        x
        )
        +
        
          cot
          
            2
          
        
        
        (
        x
        )
      
    
    
  
Rearranging gives:
  
    
      
        
          csc
          
            2
          
        
        
        (
        x
        )
        +
        
          sec
          
            2
          
        
        
        (
        x
        )
        −
        
          cot
          
            2
          
        
        
        (
        x
        )
        =
        2
         
        +
        
          tan
          
            2
          
        
        
        (
        x
        )
      
    
    
  
Draw a horizontal line (the x-axis); mark an origin O. Draw a line from O at an angle 
  
    
      
        α
      
    
    
   above the horizontal line and a second line at an angle 
  
    
      
        β
      
    
    
   above that; the angle between the second line and the x-axis is 
  
    
      
        α
        +
        β
      
    
    
  .
Place P on the line defined by 
  
    
      
        α
        +
        β
      
    
    
   at a unit distance from the origin.
Let PQ be a line perpendicular to line defined by angle 
  
    
      
        α
      
    
    
  , drawn from point Q on this line to point P. 
  
    
      
        ∴
      
    
    
   OQP is a right angle.
Let QA be a perpendicular from point A on the x-axis to Q and PB be a perpendicular from point B on the x-axis to P. 
  
    
      
        ∴
      
    
    
   OAQ and OBP are right angles.
Draw R on PB so that QR is parallel to the x-axis.
Now angle 
  
    
      
        R
        P
        Q
        =
        α
      
    
    
   (because 
  
    
      
        O
        Q
        A
        =
        
          
            π
            2
          
        
        −
        α
      
    
    
  , making 
  
    
      
        R
        Q
        O
        =
        α
        ,
        R
        Q
        P
        =
        
          
            π
            2
          
        
        −
        α
      
    
    
  , and finally 
  
    
      
        R
        P
        Q
        =
        α
      
    
    
  )
  
    
      
        R
        P
        Q
        =
        
          
            
              π
              2
            
          
        
        −
        R
        Q
        P
        =
        
          
            
              π
              2
            
          
        
        −
        (
        
          
            
              π
              2
            
          
        
        −
        R
        Q
        O
        )
        =
        R
        Q
        O
        =
        α
      
    
    
  
  
    
      
        O
        P
        =
        1
      
    
    
  
  
    
      
        P
        Q
        =
        sin
        
        β
      
    
    
  
  
    
      
        O
        Q
        =
        cos
        
        β
      
    
    
  
  
    
      
        
          
            
              A
              Q
            
            
              O
              Q
            
          
        
        =
        sin
        
        α
        
      
    
    
  , so 
  
    
      
        A
        Q
        =
        sin
        
        α
        cos
        
        β
      
    
    
  
  
    
      
        
          
            
              P
              R
            
            
              P
              Q
            
          
        
        =
        cos
        
        α
        
      
    
    
  , so 
  
    
      
        P
        R
        =
        cos
        
        α
        sin
        
        β
      
    
    
  
  
    
      
        sin
        
        (
        α
        +
        β
        )
        =
        P
        B
        =
        R
        B
        +
        P
        R
        =
        A
        Q
        +
        P
        R
        =
        sin
        
        α
        cos
        
        β
        +
        cos
        
        α
        sin
        
        β
      
    
    
  
By substituting 
  
    
      
        −
        β
      
    
    
   for 
  
    
      
        β
      
    
    
   and using Symmetry, we also get:
  
    
      
        sin
        
        (
        α
        −
        β
        )
        =
        sin
        
        α
        cos
        
        (
        −
        β
        )
        +
        cos
        
        α
        sin
        
        (
        −
        β
        )
      
    
    
  
  
    
      
        sin
        
        (
        α
        −
        β
        )
        =
        sin
        
        α
        cos
        
        β
        −
        cos
        
        α
        sin
        
        β
      
    
    
  
Another rigorous proof, and much easier, can be given by using Euler's formula, known from complex analysis. Euler's formula is:
  
    
      
        
          e
          
            i
            φ
          
        
        =
        cos
        
        φ
        +
        i
        sin
        
        φ
      
    
    
  
It follows that for angles 
  
    
      
        α
      
    
    
   and 
  
    
      
        β
      
    
    
   we have:
  
    
      
        
          e
          
            i
            (
            α
            +
            β
            )
          
        
        =
        cos
        
        (
        α
        +
        β
        )
        +
        i
        sin
        
        (
        α
        +
        β
        )
      
    
    
  
Also using the following properties of exponential functions:
  
    
      
        
          e
          
            i
            (
            α
            +
            β
            )
          
        
        =
        
          e
          
            i
            α
          
        
        
          e
          
            i
            β
          
        
        =
        (
        cos
        
        α
        +
        i
        sin
        
        α
        )
        (
        cos
        
        β
        +
        i
        sin
        
        β
        )
      
    
    
  
Evaluating the product:
  
    
      
        
          e
          
            i
            (
            α
            +
            β
            )
          
        
        =
        (
        cos
        
        α
        cos
        
        β
        −
        sin
        
        α
        sin
        
        β
        )
        +
        i
        (
        sin
        
        α
        cos
        
        β
        +
        sin
        
        β
        cos
        
        α
        )
      
    
    
  
Equating real and imaginary parts:
  
    
      
        cos
        
        (
        α
        +
        β
        )
        =
        cos
        
        α
        cos
        
        β
        −
        sin
        
        α
        sin
        
        β
      
    
    
  
  
    
      
        sin
        
        (
        α
        +
        β
        )
        =
        sin
        
        α
        cos
        
        β
        +
        sin
        
        β
        cos
        
        α
      
    
    
  
Using the figure above,
  
    
      
        O
        P
        =
        1
        
      
    
    
  
  
    
      
        P
        Q
        =
        sin
        
        β
        
      
    
    
  
  
    
      
        O
        Q
        =
        cos
        
        β
        
      
    
    
  
  
    
      
        
          
            
              O
              A
            
            
              O
              Q
            
          
        
        =
        cos
        
        α
        
      
    
    
  , so 
  
    
      
        O
        A
        =
        cos
        
        α
        cos
        
        β
        
      
    
    
  
  
    
      
        
          
            
              R
              Q
            
            
              P
              Q
            
          
        
        =
        sin
        
        α
        
      
    
    
  , so 
  
    
      
        R
        Q
        =
        sin
        
        α
        sin
        
        β
        
      
    
    
  
  
    
      
        cos
        
        (
        α
        +
        β
        )
        =
        O
        B
        =
        O
        A
        −
        B
        A
        =
        O
        A
        −
        R
        Q
        =
        cos
        
        α
        cos
        
        β
         
        −
        sin
        
        α
        sin
        
        β
        
      
    
    
  
By substituting 
  
    
      
        −
        β
      
    
    
   for 
  
    
      
        β
      
    
    
   and using Symmetry, we also get:
  
    
      
        cos
        
        (
        α
        −
        β
        )
        =
        cos
        
        α
        cos
        
        (
        −
        β
        )
        −
        sin
        
        α
        sin
        
        (
        −
        β
        )
        ,
      
    
    
  
  
    
      
        cos
        
        (
        α
        −
        β
        )
        =
        cos
        
        α
        cos
        
        β
        +
        sin
        
        α
        sin
        
        β
        
      
    
    
  
Also, using the complementary angle formulae,
  
    
      
        
          
            
              
                cos
                
                (
                α
                +
                β
                )
              
              
                
                =
                sin
                
                
                  (
                  π
                  
                    /
                  
                  2
                  −
                  (
                  α
                  +
                  β
                  )
                  )
                
              
            
            
              
              
                
                =
                sin
                
                
                  (
                  (
                  π
                  
                    /
                  
                  2
                  −
                  α
                  )
                  −
                  β
                  )
                
              
            
            
              
              
                
                =
                sin
                
                
                  (
                  π
                  
                    /
                  
                  2
                  −
                  α
                  )
                
                cos
                
                β
                −
                cos
                
                
                  (
                  π
                  
                    /
                  
                  2
                  −
                  α
                  )
                
                sin
                
                β
              
            
            
              
              
                
                =
                cos
                
                α
                cos
                
                β
                −
                sin
                
                α
                sin
                
                β
              
            
          
        
      
    
    
  
Tangent and cotangent
From the sine and cosine formulae, we get
  
    
      
        tan
        
        (
        α
        +
        β
        )
        =
        
          
            
              sin
              
              (
              α
              +
              β
              )
            
            
              cos
              
              (
              α
              +
              β
              )
            
          
        
        =
        
          
            
              sin
              
              α
              cos
              
              β
              +
              cos
              
              α
              sin
              
              β
            
            
              cos
              
              α
              cos
              
              β
              −
              sin
              
              α
              sin
              
              β
            
          
        
      
    
    
  
Dividing both numerator and denominator by 
  
    
      
        cos
        
        α
        cos
        
        β
      
    
    
  , we get
  
    
      
        tan
        
        (
        α
        +
        β
        )
        =
        
          
            
              tan
              
              α
              +
              tan
              
              β
            
            
              1
              −
              tan
              
              α
              tan
              
              β
            
          
        
      
    
    
  
Subtracting 
  
    
      
        β
      
    
    
   from 
  
    
      
        α
      
    
    
  , using 
  
    
      
        tan
        
        (
        −
        β
        )
        =
        −
        tan
        
        β
      
    
    
  ,
  
    
      
        tan
        
        (
        α
        −
        β
        )
        =
        
          
            
              tan
              
              α
              +
              tan
              
              (
              −
              β
              )
            
            
              1
              −
              tan
              
              α
              tan
              
              (
              −
              β
              )
            
          
        
        =
        
          
            
              tan
              
              α
              −
              tan
              
              β
            
            
              1
              +
              tan
              
              α
              tan
              
              β
            
          
        
      
    
    
  
Similarly from the sine and cosine formulae, we get
  
    
      
        cot
        
        (
        α
        +
        β
        )
        =
        
          
            
              cos
              
              (
              α
              +
              β
              )
            
            
              sin
              
              (
              α
              +
              β
              )
            
          
        
        =
        
          
            
              cos
              
              α
              cos
              
              β
              −
              sin
              
              α
              sin
              
              β
            
            
              sin
              
              α
              cos
              
              β
              +
              cos
              
              α
              sin
              
              β
            
          
        
      
    
    
  
Then by dividing both numerator and denominator by 
  
    
      
        sin
        
        α
        sin
        
        β
      
    
    
  , we get
  
    
      
        cot
        
        (
        α
        +
        β
        )
        =
        
          
            
              cot
              
              α
              cot
              
              β
              −
              1
            
            
              cot
              
              α
              +
              cot
              
              β
            
          
        
      
    
    
  
Or, using 
  
    
      
        cot
        
        θ
        =
        
          
            1
            
              tan
              
              θ
            
          
        
      
    
    
  ,
  
    
      
        cot
        
        (
        α
        +
        β
        )
        =
        
          
            
              1
              −
              tan
              
              α
              tan
              
              β
            
            
              tan
              
              α
              +
              tan
              
              β
            
          
        
        =
        
          
            
              
                
                  1
                  
                    tan
                    
                    α
                    tan
                    
                    β
                  
                
              
              −
              1
            
            
              
                
                  1
                  
                    tan
                    
                    α
                  
                
              
              +
              
                
                  1
                  
                    tan
                    
                    β
                  
                
              
            
          
        
        =
        
          
            
              cot
              
              α
              cot
              
              β
              −
              1
            
            
              cot
              
              α
              +
              cot
              
              β
            
          
        
      
    
    
  
Using 
  
    
      
        cot
        
        (
        −
        β
        )
        =
        −
        cot
        
        β
      
    
    
  ,
  
    
      
        cot
        
        (
        α
        −
        β
        )
        =
        
          
            
              cot
              
              α
              cot
              
              (
              −
              β
              )
              −
              1
            
            
              cot
              
              α
              +
              cot
              
              (
              −
              β
              )
            
          
        
        =
        
          
            
              cot
              
              α
              cot
              
              β
              +
              1
            
            
              cot
              
              β
              −
              cot
              
              α
            
          
        
      
    
    
  
From the angle sum identities, we get
  
    
      
        sin
        
        (
        2
        θ
        )
        =
        2
        sin
        
        θ
        cos
        
        θ
        
      
    
    
  
and
  
    
      
        cos
        
        (
        2
        θ
        )
        =
        
          cos
          
            2
          
        
        
        θ
        −
        
          sin
          
            2
          
        
        
        θ
        
      
    
    
  
The Pythagorean identities give the two alternative forms for the latter of these:
  
    
      
        cos
        
        (
        2
        θ
        )
        =
        2
        
          cos
          
            2
          
        
        
        θ
        −
        1
        
      
    
    
  
  
    
      
        cos
        
        (
        2
        θ
        )
        =
        1
        −
        2
        
          sin
          
            2
          
        
        
        θ
        
      
    
    
  
The angle sum identities also give
  
    
      
        tan
        
        (
        2
        θ
        )
        =
        
          
            
              2
              tan
              
              θ
            
            
              1
              −
              
                tan
                
                  2
                
              
              
              θ
            
          
        
        =
        
          
            2
            
              cot
              
              θ
              −
              tan
              
              θ
            
          
        
        
      
    
    
  
  
    
      
        cot
        
        (
        2
        θ
        )
        =
        
          
            
              
                cot
                
                  2
                
              
              
              θ
              −
              1
            
            
              2
              cot
              
              θ
            
          
        
        =
        
          
            
              cot
              
              θ
              −
              tan
              
              θ
            
            2
          
        
        
      
    
    
  
It can also be proved using Euler's formula
  
    
      
        
          e
          
            i
            φ
          
        
        =
        cos
        
        φ
        +
        i
        sin
        
        φ
      
    
    
  
Squaring both sides yields
  
    
      
        
          e
          
            i
            2
            φ
          
        
        =
        (
        cos
        
        φ
        +
        i
        sin
        
        φ
        
          )
          
            2
          
        
      
    
    
  
But replacing the angle with its doubled version, which achieves the same result in the left side of the equation, yields
  
    
      
        
          e
          
            i
            2
            φ
          
        
        =
        cos
        
        2
        φ
        +
        i
        sin
        
        2
        φ
      
    
    
  
It follows that
  
    
      
        (
        cos
        
        φ
        +
        i
        sin
        
        φ
        
          )
          
            2
          
        
        =
        cos
        
        2
        φ
        +
        i
        sin
        
        2
        φ
      
    
    
  .
Expanding the square and simplifying on the left hand side of the equation gives
  
    
      
        i
        (
        2
        sin
        
        φ
        cos
        
        φ
        )
        +
        
          cos
          
            2
          
        
        
        φ
        −
        
          sin
          
            2
          
        
        
        φ
         
        =
        cos
        
        2
        φ
        +
        i
        sin
        
        2
        φ
      
    
    
  .
Because the imaginary and real parts have to be the same, we are left with the original identities
  
    
      
        
          cos
          
            2
          
        
        
        φ
        −
        
          sin
          
            2
          
        
        
        φ
         
        =
        cos
        
        2
        φ
      
    
    
  ,
and also
  
    
      
        2
        sin
        
        φ
        cos
        
        φ
        =
        sin
        
        2
        φ
      
    
    
  .
The two identities giving the alternative forms for cos 2θ lead to the following equations:
  
    
      
        cos
        
        
          
            θ
            2
          
        
        =
        ±
        
        
          
            
              
                1
                +
                cos
                
                θ
              
              2
            
          
        
        ,
        
      
    
    
  
  
    
      
        sin
        
        
          
            θ
            2
          
        
        =
        ±
        
        
          
            
              
                1
                −
                cos
                
                θ
              
              2
            
          
        
        .
        
      
    
    
  
The sign of the square root needs to be chosen properly—note that if π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.
For the tan function, the equation is:
  
    
      
        tan
        
        
          
            θ
            2
          
        
        =
        ±
        
        
          
            
              
                1
                −
                cos
                
                θ
              
              
                1
                +
                cos
                
                θ
              
            
          
        
        .
        
      
    
    
  
Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to:
  
    
      
        tan
        
        
          
            θ
            2
          
        
        =
        
          
            
              sin
              
              θ
            
            
              1
              +
              cos
              
              θ
            
          
        
        .
        
      
    
    
  
Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:
  
    
      
        tan
        
        
          
            θ
            2
          
        
        =
        
          
            
              1
              −
              cos
              
              θ
            
            
              sin
              
              θ
            
          
        
        .
        
      
    
    
  
This also gives:
  
    
      
        tan
        
        
          
            θ
            2
          
        
        =
        csc
        
        θ
        −
        cot
        
        θ
        .
        
      
    
    
  
Similar manipulations for the cot function give:
  
    
      
        cot
        
        
          
            θ
            2
          
        
        =
        ±
        
        
          
            
              
                1
                +
                cos
                
                θ
              
              
                1
                −
                cos
                
                θ
              
            
          
        
        =
        
          
            
              1
              +
              cos
              
              θ
            
            
              sin
              
              θ
            
          
        
        =
        
          
            
              sin
              
              θ
            
            
              1
              −
              cos
              
              θ
            
          
        
        =
        csc
        
        θ
        +
        cot
        
        θ
        .
        
      
    
    
  
If 
  
    
      
        ψ
        +
        θ
        +
        ϕ
        =
        π
        =
      
    
    
   half circle (for example, 
  
    
      
        ψ
      
    
    
  , 
  
    
      
        θ
      
    
    
   and 
  
    
      
        ϕ
      
    
    
   are the angles of a triangle),
  
    
      
        tan
        
        (
        ψ
        )
        +
        tan
        
        (
        θ
        )
        +
        tan
        
        (
        ϕ
        )
        =
        tan
        
        (
        ψ
        )
        tan
        
        (
        θ
        )
        tan
        
        (
        ϕ
        )
        .
      
    
    
  
Proof:
  
    
      
        
          
            
              
                ψ
              
              
                
                =
                π
                −
                θ
                −
                ϕ
              
            
            
              
                tan
                
                (
                ψ
                )
              
              
                
                =
                tan
                
                (
                π
                −
                θ
                −
                ϕ
                )
              
            
            
              
              
                
                =
                −
                tan
                
                (
                θ
                +
                ϕ
                )
              
            
            
              
              
                
                =
                
                  
                    
                      −
                      tan
                      
                      θ
                      −
                      tan
                      
                      ϕ
                    
                    
                      1
                      −
                      tan
                      
                      θ
                      tan
                      
                      ϕ
                    
                  
                
              
            
            
              
              
                
                =
                
                  
                    
                      tan
                      
                      θ
                      +
                      tan
                      
                      ϕ
                    
                    
                      tan
                      
                      θ
                      tan
                      
                      ϕ
                      −
                      1
                    
                  
                
              
            
            
              
                (
                tan
                
                θ
                tan
                
                ϕ
                −
                1
                )
                tan
                
                ψ
              
              
                
                =
                tan
                
                θ
                +
                tan
                
                ϕ
              
            
            
              
                tan
                
                ψ
                tan
                
                θ
                tan
                
                ϕ
                −
                tan
                
                ψ
              
              
                
                =
                tan
                
                θ
                +
                tan
                
                ϕ
              
            
            
              
                tan
                
                ψ
                tan
                
                θ
                tan
                
                ϕ
              
              
                
                =
                tan
                
                ψ
                +
                tan
                
                θ
                +
                tan
                
                ϕ
              
            
          
        
      
    
    
  
If 
  
    
      
        ψ
        +
        θ
        +
        ϕ
        =
        
          
            
              π
              2
            
          
        
        =
      
    
    
   quarter circle,
  
    
      
        cot
        
        (
        ψ
        )
        +
        cot
        
        (
        θ
        )
        +
        cot
        
        (
        ϕ
        )
        =
        cot
        
        (
        ψ
        )
        cot
        
        (
        θ
        )
        cot
        
        (
        ϕ
        )
      
    
    
  .
Proof:
Replace each of 
  
    
      
        ψ
      
    
    
  , 
  
    
      
        θ
      
    
    
  , and 
  
    
      
        ϕ
      
    
    
   with their complementary angles, so cotangents turn into tangents and vice versa.
Given
  
    
      
        ψ
        +
        θ
        +
        ϕ
        =
        
          
            
              π
              2
            
          
        
        
      
    
    
  
  
    
      
        ∴
        (
        
          
            
              π
              2
            
          
        
        −
        ψ
        )
        +
        (
        
          
            
              π
              2
            
          
        
        −
        θ
        )
        +
        (
        
          
            
              π
              2
            
          
        
        −
        ϕ
        )
        =
        
          
            
              
                3
                π
              
              2
            
          
        
        −
        (
        ψ
        +
        θ
        +
        ϕ
        )
        =
        
          
            
              
                3
                π
              
              2
            
          
        
        −
        
          
            
              π
              2
            
          
        
        =
        π
      
    
    
  
so the result follows from the triple tangent identity.
  
    
      
        sin
        
        θ
        ±
        sin
        
        ϕ
        =
        2
        sin
        
        
          (
          
            
              
                θ
                ±
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                ∓
                ϕ
              
              2
            
          
          )
        
      
    
    
  
  
    
      
        cos
        
        θ
        +
        cos
        
        ϕ
        =
        2
        cos
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
      
    
    
  
  
    
      
        cos
        
        θ
        −
        cos
        
        ϕ
        =
        −
        2
        sin
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        sin
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
      
    
    
  
First, start with the sum-angle identities:
  
    
      
        sin
        
        (
        α
        +
        β
        )
        =
        sin
        
        α
        cos
        
        β
        +
        cos
        
        α
        sin
        
        β
      
    
    
  
  
    
      
        sin
        
        (
        α
        −
        β
        )
        =
        sin
        
        α
        cos
        
        β
        −
        cos
        
        α
        sin
        
        β
      
    
    
  
By adding these together,
  
    
      
        sin
        
        (
        α
        +
        β
        )
        +
        sin
        
        (
        α
        −
        β
        )
        =
        sin
        
        α
        cos
        
        β
        +
        cos
        
        α
        sin
        
        β
        +
        sin
        
        α
        cos
        
        β
        −
        cos
        
        α
        sin
        
        β
        =
        2
        sin
        
        α
        cos
        
        β
      
    
    
  
Similarly, by subtracting the two sum-angle identities,
  
    
      
        sin
        
        (
        α
        +
        β
        )
        −
        sin
        
        (
        α
        −
        β
        )
        =
        sin
        
        α
        cos
        
        β
        +
        cos
        
        α
        sin
        
        β
        −
        sin
        
        α
        cos
        
        β
        +
        cos
        
        α
        sin
        
        β
        =
        2
        cos
        
        α
        sin
        
        β
      
    
    
  
Let 
  
    
      
        α
        +
        β
        =
        θ
      
    
    
   and 
  
    
      
        α
        −
        β
        =
        ϕ
      
    
    
  ,
  
    
      
        ∴
        α
        =
        
          
            
              θ
              +
              ϕ
            
            2
          
        
      
    
    
   and 
  
    
      
        β
        =
        
          
            
              θ
              −
              ϕ
            
            2
          
        
      
    
    
  
Substitute 
  
    
      
        θ
      
    
    
   and 
  
    
      
        ϕ
      
    
    
  
  
    
      
        sin
        
        θ
        +
        sin
        
        ϕ
        =
        2
        sin
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
      
    
    
  
  
    
      
        sin
        
        θ
        −
        sin
        
        ϕ
        =
        2
        cos
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        sin
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
        =
        2
        sin
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
      
    
    
  
Therefore,
  
    
      
        sin
        
        θ
        ±
        sin
        
        ϕ
        =
        2
        sin
        
        
          (
          
            
              
                θ
                ±
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                ∓
                ϕ
              
              2
            
          
          )
        
      
    
    
  
Similarly for cosine, start with the sum-angle identities:
  
    
      
        cos
        
        (
        α
        +
        β
        )
        =
        cos
        
        α
        cos
        
        β
         
        −
        sin
        
        α
        sin
        
        β
      
    
    
  
  
    
      
        cos
        
        (
        α
        −
        β
        )
        =
        cos
        
        α
        cos
        
        β
        +
        sin
        
        α
        sin
        
        β
      
    
    
  
Again, by adding and subtracting
  
    
      
        cos
        
        (
        α
        +
        β
        )
        +
        cos
        
        (
        α
        −
        β
        )
        =
        cos
        
        α
        cos
        
        β
         
        −
        sin
        
        α
        sin
        
        β
        +
        cos
        
        α
        cos
        
        β
        +
        sin
        
        α
        sin
        
        β
        =
        2
        cos
        
        α
        cos
        
        β
         
      
    
    
  
  
    
      
        cos
        
        (
        α
        +
        β
        )
        −
        cos
        
        (
        α
        −
        β
        )
        =
        cos
        
        α
        cos
        
        β
         
        −
        sin
        
        α
        sin
        
        β
        −
        cos
        
        α
        cos
        
        β
        −
        sin
        
        α
        sin
        
        β
        =
        −
        2
        sin
        
        α
        sin
        
        β
      
    
    
  
Substitute 
  
    
      
        θ
      
    
    
   and 
  
    
      
        ϕ
      
    
    
   as before,
  
    
      
        cos
        
        θ
        +
        cos
        
        ϕ
        =
        2
        cos
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        cos
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
      
    
    
  
  
    
      
        cos
        
        θ
        −
        cos
        
        ϕ
        =
        −
        2
        sin
        
        
          (
          
            
              
                θ
                +
                ϕ
              
              2
            
          
          )
        
        sin
        
        
          (
          
            
              
                θ
                −
                ϕ
              
              2
            
          
          )
        
      
    
    
  
The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2π) of the whole circle, so its area is θ/2.
  
    
      
        O
        A
        =
        O
        D
        =
        1
        
      
    
    
  
  
    
      
        A
        B
        =
        sin
        
        θ
        
      
    
    
  
  
    
      
        C
        D
        =
        tan
        
        θ
        
      
    
    
  
The area of triangle OAD is AB/2, or sinθ/2. The area of triangle OCD is CD/2, or tanθ/2.
Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have
  
    
      
        sin
        
        θ
        <
        θ
        <
        tan
        
        θ
        
      
    
    
  
This geometric argument applies if 0<θ<π/2. It relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. For the sine function, we can handle other values. If θ>π/2, then θ>1. But sinθ≤1 (because of the Pythagorean identity), so sinθ<θ. So we have
  
    
      
        
          
            
              sin
              
              θ
            
            θ
          
        
        <
        1
         
         
         
        
          i
          f
        
         
         
         
        0
        <
        θ
        
      
    
    
  
For negative values of θ we have, by symmetry of the sine function
  
    
      
        
          
            
              sin
              
              θ
            
            θ
          
        
        =
        
          
            
              sin
              
              (
              −
              θ
              )
            
            
              −
              θ
            
          
        
        <
        1
        
      
    
    
  
Hence
  
    
      
        
          
            
              sin
              
              θ
            
            θ
          
        
        <
        1
         
         
         
        
          i
          f
        
         
         
         
        θ
        ≠
        0
        
      
    
    
  
  
    
      
        
          
            
              tan
              
              θ
            
            θ
          
        
        >
        1
         
         
         
        
          i
          f
        
         
         
         
        0
        <
        θ
        <
        
          
            π
            2
          
        
        
      
    
    
  
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          sin
          
          θ
        
        =
        0
        
      
    
    
  
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          cos
          
          θ
        
        =
        1
        
      
    
    
  
Sine and angle ratio identity
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          
            
              sin
              
              θ
            
            θ
          
        
        =
        1
      
    
    
  
Proof: From the previous inequalities, we have, for small angles
  
    
      
        sin
        
        θ
        <
        θ
        <
        tan
        
        θ
        
      
    
    
  ,
Therefore,
  
    
      
        
          
            
              sin
              
              θ
            
            θ
          
        
        <
        1
        <
        
          
            
              tan
              
              θ
            
            θ
          
        
        
      
    
    
  ,
Consider the right-hand inequality. Since
  
    
      
        tan
        
        θ
        =
        
          
            
              sin
              
              θ
            
            
              cos
              
              θ
            
          
        
      
    
    
  
  
    
      
        ∴
        1
        <
        
          
            
              sin
              
              θ
            
            
              θ
              cos
              
              θ
            
          
        
      
    
    
  
Multiply through by 
  
    
      
        cos
        
        θ
      
    
    
  
  
    
      
        cos
        
        θ
        <
        
          
            
              sin
              
              θ
            
            θ
          
        
      
    
    
  
Combining with the left-hand inequality:
  
    
      
        cos
        
        θ
        <
        
          
            
              sin
              
              θ
            
            θ
          
        
        <
        1
      
    
    
  
Taking 
  
    
      
        cos
        
        θ
      
    
    
   to the limit as 
  
    
      
        θ
        →
        0
      
    
    
  
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          cos
          
          θ
        
        =
        1
        
      
    
    
  
Therefore,
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          
            
              sin
              
              θ
            
            θ
          
        
        =
        1
      
    
    
  
Cosine and angle ratio identity
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          
            
              1
              −
              cos
              
              θ
            
            θ
          
        
        =
        0
      
    
    
  
Proof:
  
    
      
        
          
            
              
                
                  
                    
                      1
                      −
                      cos
                      
                      θ
                    
                    θ
                  
                
              
              
                
                =
                
                  
                    
                      1
                      −
                      
                        cos
                        
                          2
                        
                      
                      
                      θ
                    
                    
                      θ
                      (
                      1
                      +
                      cos
                      
                      θ
                      )
                    
                  
                
              
            
            
              
              
                
                =
                
                  
                    
                      
                        sin
                        
                          2
                        
                      
                      
                      θ
                    
                    
                      θ
                      (
                      1
                      +
                      cos
                      
                      θ
                      )
                    
                  
                
              
            
            
              
              
                
                =
                
                  (
                  
                    
                      
                        sin
                        
                        θ
                      
                      θ
                    
                  
                  )
                
                ×
                sin
                
                θ
                ×
                
                  (
                  
                    
                      1
                      
                        1
                        +
                        cos
                        
                        θ
                      
                    
                  
                  )
                
              
            
          
        
      
    
    
  
The limits of those three quantities are 1, 0, and 1/2, so the resultant limit is zero.
Cosine and square of angle ratio identity
  
    
      
        
          lim
          
            θ
            →
            0
          
        
        
          
            
              1
              −
              cos
              
              θ
            
            
              θ
              
                2
              
            
          
        
        =
        
          
            1
            2
          
        
      
    
    
  
Proof:
As in the preceding proof,
  
    
      
        
          
            
              1
              −
              cos
              
              θ
            
            
              θ
              
                2
              
            
          
        
        =
        
          
            
              sin
              
              θ
            
            θ
          
        
        ×
        
          
            
              sin
              
              θ
            
            θ
          
        
        ×
        
          
            1
            
              1
              +
              cos
              
              θ
            
          
        
        .
        
      
    
    
  
The limits of those three quantities are 1, 1, and 1/2, so the resultant limit is 1/2.
Proof of Compositions of trig and inverse trig functions
All these functions follow from the Pythagorean trigonometric identity. We can prove for instance the function
  
    
      
        sin
        
        [
        arctan
        
        (
        x
        )
        ]
        =
        
          
            x
            
              1
              +
              
                x
                
                  2
                
              
            
          
        
      
    
    
  
Proof:
We start from
  
    
      
        
          sin
          
            2
          
        
        
        θ
        +
        
          cos
          
            2
          
        
        
        θ
        =
        1
      
    
    
  
Then we divide this equation by 
  
    
      
        
          cos
          
            2
          
        
        
        θ
      
    
    
  
  
    
      
        
          cos
          
            2
          
        
        
        θ
        =
        
          
            1
            
              
                tan
                
                  2
                
              
              
              θ
              +
              1
            
          
        
      
    
    
  
Then use the substitution 
  
    
      
        θ
        =
        arctan
        
        (
        x
        )
      
    
    
  , also use the Pythagorean trigonometric identity:
  
    
      
        1
        −
        
          sin
          
            2
          
        
        
        [
        arctan
        
        (
        x
        )
        ]
        =
        
          
            1
            
              
                tan
                
                  2
                
              
              
              [
              arctan
              
              (
              x
              )
              ]
              +
              1
            
          
        
      
    
    
  
Then we use the identity 
  
    
      
        tan
        
        [
        arctan
        
        (
        x
        )
        ]
        ≡
        x
      
    
    
  
  
    
      
        sin
        
        [
        arctan
        
        (
        x
        )
        ]
        =
        
          
            x
            
              
                x
                
                  2
                
              
              +
              1