![]() | ||
In four-dimensional geometry, a prismatic uniform polytope is a uniform polychoron with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.
Contents
- Convex polyhedral prisms
- Duoprisms p q
- Polygonal prismatic prisms
- Uniform antiprismatic prism
- References
The prismatic uniform polychora consist of two infinite families:
Convex polyhedral prisms
The most obvious family of prismatic polychora is the polyhedral prisms, i.e. products of a polyhedron with a line segment. The cells of such a polychoron are two identical uniform polyhedra lying in parallel hyperplanes (the base cells) and a layer of prisms joining them (the lateral cells). This family includes prisms for the 75 nonprismatic uniform polyhedra (of which 18 are convex; one of these, the cube-prism, is listed above as the tesseract).
There are 18 convex polyhedral prisms created from 5 Platonic solids and 13 Archimedean solids as well as for the infinite families of three-dimensional prisms and antiprisms. The symmetry number of a polyhedral prism is twice that of the base polyhedron.
Duoprisms: [p] × [q]
The second is the infinite family of uniform duoprisms, products of two regular polygons.
Their Coxeter diagram is of the form
This family overlaps with the first: when one of the two "factor" polygons is a square, the product is equivalent to a hyperprism whose base is a three-dimensional prism. The symmetry number of a duoprism whose factors are a p-gon and a q-gon (a "p,q-duoprism") is 4pq if p≠q; if the factors are both p-gons, the symmetry number is 8p2. The tesseract can also be considered a 4,4-duoprism.
The elements of a p,q-duoprism (p ≥ 3, q ≥ 3) are:
There is no uniform analogue in four dimensions to the infinite family of three-dimensional antiprisms.
Infinite set of p-q duoprism - - p q-gonal prisms, q p-gonal prisms:
Polygonal prismatic prisms
The infinite set of uniform prismatic prisms overlaps with the 4-p duoprisms: (p≥3) - - p cubes and 4 p-gonal prisms - (All are the same as 4-p duoprism)
Uniform antiprismatic prism
The infinite sets of uniform antiprismatic prisms or antiduoprisms are constructed from two parallel uniform antiprisms: (p≥3) - - 2 p-gonal antiprisms, connected by 2 p-gonal prisms and 2p triangular prisms.
A p-gonal antiprismatic prism has 4p triangle, 4p square and 4 p-gon faces. It has 10p edges, and 4p vertices.