![]() | ||
In the mathematical theory of knots, a pretzel link is a special kind of link. A pretzel link which is also a knot (i.e. a link with one component) is a pretzel knot.
Contents
In the standard projection of the
A pretzel link can also be described as a Montesinos link with integer tangles.
Some basic results
The
The
The
The
The
Some examples
The (1, 1, 1) pretzel knot is the (right-handed) trefoil; the (−1, −1, −1) pretzel knot is its mirror image.
The (5, −1, −1) pretzel knot is the stevedore knot (61).
If p, q, r are distinct odd integers greater than 1, then the (p, q, r) pretzel knot is a non-invertible knot.
The (2p, 2q, 2r) pretzel link is a link formed by three linked unknots.
The (−3, 0, −3) pretzel knot (square knot (mathematics)) is the connected sum of two trefoil knots.
The (0, q, 0) pretzel link is the split union of an unknot and another knot.
Montesinos
A Montesinos link is a special kind of link that generalizes pretzel links (a pretzel link can also be described as a Montesinos link with integer tangles). A Montesinos link which is also a knot (i.e. a link with one component) is a Montesinos knot.
A Montesinos link is composed of several rational tangles. One notation for a Montesinos link is
In this notation,
Utility
(−2, 3, 2n + 1) pretzel links are especially useful in the study of 3-manifolds. Many results have been stated about the manifolds that result from Dehn surgery on the (−2,3,7) pretzel knot in particular.
The hyperbolic volume of the complement of the (−2,3,8) pretzel link is 4 times Catalan's constant, approximately 3.66. This pretzel link complement is one of two two-cusped hyperbolic manifolds with the minimum possible volume, the other being the complement of the Whitehead link.