![]() | ||
Premelting (also surface melting) describes the fact that, even below its melting point (
Contents
- History
- Theoretical explanations
- Thermodynamical picture for solid gas interface
- Lifshitz theory Complete and incomplete premelting
- Landau theory
- Experimental proof for premelting
- Curvature disorder and impurities
- Ice skating
- References
Considering a solid-vapour interface, complete and incomplete premelting can be distinguished. During a temperature rise from below to above
History
The first to mention premelting might have been Michael Faraday in 1842 for ice surfaces. He compared the effect which holds a snowball together to that which makes buildings from moistured sand stable. Another interesting thing he mentioned is that two blocks of ice can freeze together. Later Tammann and Stranski suggested that all surfaces might, due to the reduction of surface energy, start melting at their surfaces. Frenkel strengthened this by noting that, in contrast to liquids, no overheating can be found for solids. After extensive studies on many materials, it can be concluded that it is a common attribute of the solid state that the melting process begins at the surface.
Theoretical explanations
There are several ways to approach the topic of premelting the most figurative way might be thermodynamically. A more detailed or abstract view on what physics is important for premelting is given by the Lifshitz and the Landau theories. One always starts with looking at a crystalline solid phase (fig. 1: (1) solid) and another phase. This second phase (fig. 1: (2)) can either be vapour, liquid or solid. Further it can consist of the same chemical material or another. In the case of the second phase being a solid of the same chemical material one speaks of grain boundaries. This case is very important when looking at polycrystalline materials.
Thermodynamical picture for solid gas interface
In the following thermodynamical equilibrium is assumed, as well as for simplicity (2) should be a vaporous phase.
The first (1) and the second (2) phase are always divided by some form of interface, what results in an interfacial energy
If this is the case then it is more efficient for the system to form a separating phase (3). The only possibility for the system to form such a layer is to take material of the solid and "melt" it to a quasi-liquid. In further notation there will be no distinction between quasi-liquid and liquid but one should always keep in mind that there is a difference. This difference to a real liquid becomes clear when looking at a very thin layer (l). As, due to the long range forces of the molecules of the solid material the liquid very near the solid still "feels" the order of crystalline solid and hence itself is in a state providing a not liquid like amount of order. As considering a very thin layer at the moment it is clear that the whole separating layer (l) is too well ordered for a liquid. Further comments on ordering can be found in the paragraph on Landau theory.
Now, looking closer at the thermodynamics of the newly introduced phase (l), its Gibbs energy can be written as:
Were
Where
Where
These formulas also show that the more the temperature increases, the more increases the thickness of the premelt as this is energetically advantageous. This is the explanation why no overheating exists for this type of phase transition.
Lifshitz theory: Complete and incomplete premelting
With the help of the Lifshitz Theory on Casimir, respectively van der Waals, interactions of macroscopic bodies premelting can be viewed from an electrodynamical perspective. A good example for determining the difference between complete and incomplete premelting is ice. From VUV frequencies on the polarizability of ice is greater than that of water, at lower frequencies this is vice versa. Assuming there is already a film of thickness d on the solid it is easy for any components for electromagnetic waves to travel through the film in the direction perpendicular to the solid surface as long d is small. Hence as long as the film is thin compared to the frequency interaction from the solid to the whole film is possible. But when d gets large against typical VUV frequencies the electronic structure of the film will be too slow to promote the high frequencies to the other end of the liquid phase. Thus this end of the liquid phase feels only a retarded van der Waals interaction from the solid phase. Hence the attraction between the liquid molecules themselves will outweigh and they will start forming droplets instead to thicken the film further. So the speed of light limits complete premelting. This makes it a question of solid and surface free energies whether complete premelting occurs. Complete surface melting will occur when
For solid–solid interfaces it cannot be predicted in general whether the premelting is complete or incomplete when only considering van der Waals interactions. Here other types of interactions become very important. This also accounts for grain boundaries.
Landau theory
Most insight in the problem probably emerges when approaching the effect form Landau Theory. Which is a little bit problematic as the melting of a bulk in general has to be considered as a first order phase transition, meaning the order parameter
Where
Experimental proof for premelting
There are several techniques to prove the existence of a liquid layer on a well-ordered surface. Basically it is all about showing that there is a phase on top of the solid which has hardly any order (quasi-liquid, see fig. order parameter). One possibility was done by Frenken and van der Veen using proton scattering on a lead (Pb) single crystal (110) surface. First the surface was atomically cleaned in [UHV], because one obviously has to have a very well ordered surface for such experiments. Than they did proton shadowing and blocking measurements. An ideal shadowing and blocking measurements results in an energy spectrum of the scattered protons that shows only a peak for the first surface layer and nothing else. Due to the non ideality of the experiment the spectrum also shows effects of the underlying layers. That means the spectrum is not one well defined peak but has a tail to lower energies due to protons scattered on deeper layers which results in losing energies because of stopping. This is different for a liquid film on the surface: This film does hardly (to the meaning of hardly see Landau theory) have any order. So the effects of shadowing and blocking vanish what means all the liquid film contributes the same amount of scattered electrons to the signal. Therefore, the peak does not only have a tail, but also becomes broadened. During their measurements Frenken and van der Veen raised the temperature to the melting point and hence could show that with increasing temperature a disordered film formed on the surface in equilibrium with a still well ordered Pb crystal.
Curvature, disorder and impurities
Till now and ideal surface was considered but there are several effects which influence premelting:
Ice skating
The friction coefficient for ice, without a liquid film on the surface, is measured to be
While contributions from all three of these factors are usually in effect when ice skating, the scientific community has long debated over which is the dominating mechanism. For several decades it was common to explain the low friction of the skates on ice by pressure melting, but there are several recent arguments that contradict this thesis. The strongest argument against pressure melting is that ice skating is still possible below temperatures under -20 °C (253K). At this temperature, a great deal of pressure (>100MPa) is required to induce melting. Just below -23 °C (250K), increasing the pressure can only form a different solid structure of ice (Ice III) since the isotherm no longer passes through the liquid phase on the phase diagram. While impurities in the ice will suppress the melting temperature, the many materials scientists agree that pressure melting is not the dominate mechanism. The thickness of the water film due to premelting is also limited at low temperatures. While the water film can reach thicknesses on the order of