Harman Patil (Editor)

Phytoestrogens

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Classification
  
Estrogen

Phytoestrogens httpsdraxecomwpcontentuploads201512Phyto

Phytoestrogens are plant-derived xenoestrogens (see estrogen) not generated within the endocrine system but consumed by eating phytoestrogenic plants. Also called "dietary estrogens", they are a diverse group of naturally occurring nonsteroidal plant compounds that, because of their structural similarity with estradiol (17-β-estradiol), have the ability to cause estrogenic or/and antiestrogenic effects, by sitting in and blocking receptor sites against estrogen.

Contents

Their name comes from the Greek phyto ("plant") and estrogen, the hormone which gives fertility to female mammals. The word "estrus" - Greek οίστρος - means "sexual desire", and "gene" - Greek γόνο - is "to generate". It has been hypothesized that plants use phytoestrogens as part of their natural defence against the overpopulation of herbivore animals by controlling female fertility.

The similarities, at molecular level, of estrogens and phytoestrogens allow them to mildly mimic and sometimes act as antagonists of estrogen. Phytoestrogens were first observed in 1926, but it was unknown if they could have any effect in human or animal metabolism. In the 1940s and early 1950s, it was noticed that some pastures of subterranean clover and red clover (phytoestrogen-rich plants) had adverse effects on the fecundity of grazing sheep. Researchers are exploring the nutritional role of phytoestrogens in the regulation of cholesterol and the maintenance of proper bone density post-menopause. Evidence is accruing that phytoestrogens may have protective action against diverse health disorders, such as prostate, breast, bowel, and other cancers, cardiovascular disease, brain function disorders and osteoporosis,

Phytoestrogens cannot be considered nutrients, given that the lack of these in the diet does not produce any characteristic deficiency syndrome nor do they participate in any essential biological function.

Analytical methods are available to determine phytoestrogen content in plants and food.

Structure

Phytoestrogens mainly belong to a large group of substituted natural phenolic compounds: the coumestans, prenylflavonoids and isoflavones are three of the most active in estrogenic effects in this class. The best-researched are isoflavones, which are commonly found in soy and red clover. Lignans have also been identified as phytoestrogens, although they are not flavonoids. Mycoestrogens have similar structures and effects, but are not components of plants; these are mold metabolites of Fusarium, especially common on cereal grains, but also occurring elsewhere, e.g. on various forages. Although mycoestrogens are rarely taken into account in discussions about phytoestrogens, these are the compounds that initially generated the interest on the topic.

Mechanism of action

Phytoestrogens exert their effects primarily through binding to estrogen receptors (ER). There are two variants of the estrogen receptor, alpha (ER-α) and beta (ER-β) and many phytoestrogens display somewhat higher affinity for ER-β compared to ER-α.

The key structural elements that enable phytoestrogens to bind with high affinity to estrogen receptors and display estradiol-like effects are:

  • The phenolic ring that is indispensable for binding to estrogen receptor
  • The ring of isoflavones mimicking a ring of estrogens at the receptors binding site
  • Low molecular weight similar to estrogens (MW=272)
  • Distance between two hydroxyl groups at the isoflavones nucleus similar to that occurring in estradiol
  • Optimal hydroxylation pattern
  • In addition to interaction with ERs, phytoestrogens may also modulate the concentration of endogenous estrogens by binding or inactivating some enzymes, and may affect the bioavailability of sex hormones by depressing or stimulating the synthesis of sex hormone-binding globulin (SHBG).

    Emerging evidence shows that some phytoestrogens bind to and transactivate peroxisome proliferator-activated receptors (PPARs). In vitro studies show an activation of PPARs at concentrations above 1 μM, which is higher than the activation level of ERs. At the concentration below 1 μM, activation of ERs may play a dominant role. At higher concentrations (>1 μM), both ERs and PPARs are activated. Studies have shown that both ERs and PPARs influence each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.

    Ecology

    These compounds in plants are an important part of their defense system, mainly against fungi.

    Phytoestrogens are ancient naturally occurring substances, and as dietary phytochemicals they are considered as co-evolutive with mammals. In the human diet, phytoestrogens are not the only source of exogenous estrogens. Xenoestrogens (novel, man-made), are found as food additives and ingredients, and also in cosmetics, plastics, and insecticides. Environmentally, they have similar effects as phytoestrogens, making it difficult to clearly separate the action of these two kind of agents in studies done on populations.

    Avian studies

    The consumption of plants with unusual content of phytoestrogens under drought conditions, has been shown to decrease fertility in quail. Parrot food as available in nature has shown only weak estrogenic activity. Studies have been conducted on screening methods for environmental estrogens present in manufactured supplementary food, with the purpose to enable reproduction of endangered species.

    Effects on humans

    In human beings, phytoestrogens are readily absorbed, circulate in plasma and are excreted in the urine. Metabolic influence is different from that of grazing animals due to the differences between ruminant versus monogastric digestive systems.

    Males

    A 2010 meta-analysis of fifteen placebo-controlled studies said that "neither soy foods nor isoflavone supplements alter measures of bioavailable testosterone concentrations in men." Furthermore, isoflavone supplementation has no effect on sperm concentration, count or motility, and it leads to no observable changes in testicular or ejaculate volume. A 2010 review suggested that the sperm count decline and the increasing rate of testicular cancers in the West could be linked to a higher presence of isoflavone phytoestrogens in the diet, even if this is not proved and must still be debated.

    Females

    It is unclear if phytoestrogens have any effect on the cause or prevention of cancer in females. Some epidemiological studies have suggested a protective effect against breast cancer. But a recent in vitro study concluded that females with current or past breast cancer may risk of tumor growth by consuming soy products, since they can stimulate the growth of estrogen receptor-positive cells in vitro. Low levels of genistein and daidzein, the phytoestrogens in soybeans, showed the potential to stimulate tumors, while protective effects were found at larger concentrations of the same phytoestrogen. A 2006 review article concluded that not enough information is available on the effects of phytoestrogens to justify drawing conclusions. While preliminary in vitro results suggest that isoflavins inhibit tumor growth, more research is needed to evaluate how isoflavones affect breast tissue in females at high risk for breast cancer. A more recent epidemiologic study argued that consumption of soy estrogens is safe for patients with breast cancer and that it may in fact decrease mortality and recurrence rates. Thus, even review studies have failed to produce consensus on the relationship between phytoestrogens and breast cancer.

    It also remains unclear if phytoestrogens can minimize some of the deleterious effects of low estrogen levels (hypoestrogenism) resulting from oophorectomy, menopause, or other causes. A Cochrane Review of the use of phytoestrogens to relieve the vasomotor symptoms of menopause (hot flashes) concluded that there was no evidence to suggest any benefit to their use. Another study reported that phytoestrogens such as genistein may help prevent photoaging in human skin and promote formation of hyaluronic acid.

    Infant formula

    Some studies have found that some concentrations of isoflavones may have effects on intestinal cells. At low doses, genistein acted as a weak estrogen and stimulated cell growth; at high doses, it inhibited proliferation and altered cell cycle dynamics. This biphasic response correlates with how genistein is thought to exert its effects.

    Some reviews express the opinion that more research is needed to answer the question of what effect phytoestrogens may have on infants, but their authors did not find any adverse effects. Studies conclude there are no adverse effects in human growth, development, or reproduction as a result of the consumption of soy-based infant formula compared to conventional cow-milk formula. Soy formula presents no more risk than cow-milk formula. One of these studies, published at the Journal of Nutrition, concludes that:

    Comprehensive literature reviews and clinical studies of infants fed SBIFs [soy-based infant formulas] have resolved questions or raise no clinical concerns with respect to nutritional adequacy, sexual development, neurobehavioral development, immune development, or thyroid disease. SBIFs provide complete nutrition that adequately supports normal infant growth and development. FDA has accepted SBIFs as safe for use as the sole source of nutrition.

    Clinical guidelines from the American Academy of Pediatrics state: "although isolated soy protein-based formulas may be used to provide nutrition for normal growth and development, there are few indications for their use in place of cow milk-based formula. These indications include (a) for infants with galactosemia and hereditary lactase deficiency (rare) and (b) in situations in which a vegetarian diet is preferred."

    Ethnopharmacology

    In some countries, phytoestrogenic plants have been used for centuries in the treatment of menstrual and menopausal problems, as well as for fertility problems. Plants used that have been shown to contain phytoestrogens include Pueraria mirifica, and its close relative, kudzu, Angelica, fennel and anise. In a rigorous study, the use of one such source of phytoestrogen, red clover, has been shown to be safe, but ineffective in relieving menopausal symptoms (black cohosh is also used for menopausal symptoms, but does not contain phytoestrogens.) Panax Ginseng contains phytoestrogens and has been used for menopausal symptoms .

    References

    Phytoestrogens Wikipedia