| Notation (                  μ                ,                  Λ                )        ∼                  N          W                (                              μ                                0                          ,        λ        ,                  W                ,        ν        )              {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )} Parameters μ                                0                          ∈                              R                                D                                        {\displaystyle {\boldsymbol {\mu }}_{0}\in \mathbb {R} ^{D}\,}   location (vector of real)                    λ        >        0                      {\displaystyle \lambda >0\,}   (real)                              W                ∈                              R                                D            ×            D                                {\displaystyle \mathbf {W} \in \mathbb {R} ^{D\times D}}   scale matrix (pos. def.)                    ν        >        D        −        1                      {\displaystyle \nu >D-1\,}   (real) Support μ                ∈                              R                                D                          ;                  Λ                ∈                              R                                D            ×            D                                {\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{D};{\boldsymbol {\Lambda }}\in \mathbb {R} ^{D\times D}}   covariance matrix (pos. def.) PDF f        (                  μ                ,                  Λ                          |                                      μ                                0                          ,        λ        ,                  W                ,        ν        )        =                              N                          (                  μ                          |                                      μ                                0                          ,        (        λ                  Λ                          )                      −            1                          )                                       W                          (                  Λ                          |                          W                ,        ν        )              {\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Lambda }}|{\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})\ {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )} | ||
In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix).
Contents
Definition
Suppose
has a multivariate normal distribution with mean                     
has a Wishart distribution. Then                     
Probability density function
Marginal distributions
By construction, the marginal distribution over                               
Generating normal-Wishart random variates
Generation of random variates is straightforward:
- Sample                               Λ from a Wishart distribution with parametersW andν 
- Sample                               μ from a multivariate normal distribution with meanμ 0 ( λ Λ ) − 1 
