Siddhesh Joshi (Editor)

Nicholas J Phillips

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Residence
  
United Kingdom

Role
  
Physicist

Awards
  
Young Medal and Prize

Name
  
Nicholas Phillips

Fields
  
Physicist

Alma mater
  
Imperial College

Influenced
  
Derek Abbott

Citizenship
  
British


Nicholas J. Phillips

Born
  
26 September 1933 Finchley, London, United Kingdom (
1933-09-26
)

Institutions
  
De Montfort University (DMU) Loughborough University (LUT) Sperry Rand Research Centre English Electric AWRE Aldermaston

Known for
  
Display Holograms Phillips-Bjelkhagen Ultimate (PBU)

Notable awards
  
Thomas Young Medal (1981)

Died
  
May 23, 2009, Loughborough, United Kingdom

Education
  
Imperial College London

Nicholas (Nick) John Phillips (26 September 1933 – 23 May 2009) was an English physicist, notable for the development of photochemical processing techniques for the color hologram. Holograms typically used to have low signal-to-noise ratios, and Phillips is credited as the pioneer of silver halide holographic processing techniques for producing high-quality reflection holograms.

Contents

Career

Phillips graduated with a BSc degree in physics from Imperial College, London. He was a senior researcher at the Atomic Weapons Research Establishment (AWRE), Aldermaston, from 1959-1962. He was a research scientist at the Sperry Rand Research Centre, Sudbury, Massachusetts, United States, from 1962-1963. He was a theoretical physicist at English Electric, Whetstone, Leicester, UK, from 1963-1965. From 1965-1993 he was appointed at Loughborough University, where he rose to Professor of Applied Optics. In October 1993, he was appointed as Professor of Imaging Science at De Montfort University, Leicester, UK. Phillips was the co-founder in the early 1970s of Holoco, who using lasers supplied by The Who (that had been used in laser light shows during their concerts), constructed the Light Fantastic exhibitions as The Royal Academy of Arts, London, in 1977-8. The company became Advanced Holographics in 1980 when The Who withdrew their financial backing, and was based in Loughborough, UK, and later became part of Markem Systems.

Research and Achievements

Phillips is credited with the development of bleaching and processing techniques, which made it possible to record multi-color reflection holograms from a single wavelength laser. His research interests include holographic displays, edge-lit holograms, optical encoding for security, photopolymers, and novel micro-optic systems, and he has numerous patents in these areas.

Holographic Art

Phillips developed a technique for producing white light holograms that work in dim lighting conditions, which are now widely used in the world of holographic art.

Awards

Phillips was awarded the Institute of Physics Thomas Young Medal (1981) in recognition for contributions to holography, particularly the development of high quality holograms for visual display. He is a Fellow of the Institute of Physics.

Selected Publications by Phillips

  • N. J. Phillips and D. Porter, "An advance in the processing of holograms," Journal of Physics E: Scientific Instruments (1976) p. 631
  • N. J. Phillips, A. A. Ward, R. Cullen, and D. Porter, "Advances in holographic bleaches," Photographic Science and Engineering, 24 (1980) p. 120.
  • N. J. Phillips, H. Heyworth, and T. Hare, "On Lippmann's photography," Journal of Photographic Science, 32 (1984) pp. 158–169.
  • N. J. Phillips and R. A. J. van der Werf, "The creation of efficient reflective Lippmann layers in ultra-fine grain silver halide materials using non-laser sources," Journal of Photographic Science, 33 (1985) pp. 22–28,
  • N. J. Phillips, "Benign bleaching for healthy holography," Holosphere, 14(4) (1986) p. 21.
  • N. J. Phillips, "The silver halides—the workhorse of the holography business," Proceedings of the International Symposium of Display Holography, 3 (1988) p. 35.
  • D. Abbott, B. R. Davis, N. J. Phillips, and K. Eshraghian, "Simple derivation of the thermal noise formula using window-limited Fourier transforms," IEEE Trans. Education, 39(1) (1996) pp. 1–13.
  • References

    Nicholas J. Phillips Wikipedia