Abbreviation NVMe | Website www.nvmexpress.org | |
![]() | ||
Formation 2011; 6 years ago (2011) |
NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCI) is a logical device interface specification for accessing non-volatile storage media attached via a PCI Express (PCIe) bus. The initialism, NVM, stands for non-volatile memory, which is commonly flash memory that comes in the form of solid-state drives (SSDs). NVM Express, as a logical device interface, has been designed from the ground up to capitalize on the low latency and internal parallelism of flash-based storage devices, mirroring the parallelism of contemporary CPUs, platforms and applications.
Contents
By its design, NVM Express allows host hardware and software to fully exploit the levels of parallelism possible in modern SSDs. As a result, NVM Express reduces I/O overhead and brings various performance improvements in comparison to previous logical-device interfaces, including multiple, long command queues, and reduced latency. (The previous interface protocols were developed for use with far slower hard disk drives (HDD) where a very lengthy delay in computer terms exists between a request and data receipt, data speeds are much slower than RAM speeds, and where disk rotation and seek time give rise to further optimization requirements.)
NVM Express devices exist both in the form of standard-sized PCI Express expansion cards and as 2.5-inch form-factor devices that provide a four-lane PCI Express interface through the U.2 connector (formerly known as SFF-8639). SATA Express storage devices and the M.2 specification for internally mounted computer expansion cards also support NVM Express as the logical device interface.
Background
Historically, most SSDs used buses such as SATA, SAS or Fibre Channel for interfacing with the rest of a computer system. Since SSDs became available in mass markets, SATA has become the most typical way for connecting SSDs in personal computers; however, SATA was designed primarily for interfacing with mechanical hard disk drives (HDDs), and it became increasingly inadequate for SSDs that improved in speed over time. For example, within about 5 years of mass market mainstream adoption (2005-2010) many SSDs were already held back by the comparatively slow data rates available for hard drives - unlike hard disk drives, some SSDs are limited by the maximum throughput of SATA.
High-end SSDs had been made using the PCI Express bus before NVMe, but using non-standard specification interfaces. By standardizing the interface of SSDs, operating systems only need one driver to work with all SSDs adhering to the specification. It also means that each SSD manufacturer does not have to use additional resources to design specific interface drivers. This is similar to how USB mass storage devices are built to follow the USB mass-storage device class specification and work with all computers, with no per-device drivers needed.
As of September 2014, a new standard for using NVMe over Fibre Channel (FC) is also in development.
History
The first details of a new standard for accessing non-volatile memory emerged at the Intel Developer Forum 2007, when NVMHCI was shown as the host-side protocol of a proposed architectural design that had Open NAND Flash Interface Working Group (ONFI) on the memory (flash) chips side. A NVMHCI working group led by Intel was formed that year. The NVMHCI 1.0 specification was completed in April 2008 and released on Intel's web site.
Technical work on NVMe began in the second half of 2009. The NVMe specifications were developed by the NVM Express Workgroup, which consists of more than 90 companies; Amber Huffman of Intel was the working group's chair. Version 1.0 of the specification was released on 1 March 2011, while version 1.1 of the specification was released on 11 October 2012. Major features added in version 1.1 are multi-path I/O (with namespace sharing) and arbitrary-length scatter-gather I/O. It is expected that future revisions will significantly enhance namespace management. Because of its feature focus, NVMe 1.1 was initially called "Enterprise NVMHCI". An update for the base NVMe specification, called version 1.0e, was released in January 2013. In June 2011, a Promoter Group led by seven companies was formed.
The first commercially available NVMe chipsets were released by Integrated Device Technology (89HF16P04AG3 and 89HF32P08AG3) in August 2012. The first NVMe drive, Samsung's XS1715 enterprise drive, was announced in July 2013; according to Samsung, this drive supported 3 GB/s read speeds, six times faster than their previous enterprise offerings. The LSI SandForce SF3700 controller family, released in November 2013, also supports NVMe. Sample engineering boards with the PCI Express 2.0 ×4 model of this controller found 1,800 MB/sec read/write sequential speeds and 150K/80K random IOPS. A Kingston HyperX "prosumer" product using this controller was showcased at the Consumer Electronics Show 2014 and promised similar performance. In June 2014, Intel announced their first NVM Express products, the Intel SSD data center family that interfaces with the host through PCI Express bus, which includes the DC P3700 series, the DC P3600 series, and the DC P3500 series. As of November 2014, NVMe drives are commercially available.
In March 2014, the group incorporated to become NVM Express, Inc., which as of November 2014 consists of more than 65 companies from across the industry. NVM Express specifications are owned and maintained by NVM Express, Inc., which also promotes industry awareness of NVM Express as an industry-wide standard. NVM Express, Inc. is directed by a thirteen-member board of directors selected from the Promoter Group, which includes Cisco, Dell, EMC, HGST, Intel, Micron, Microsoft, NetApp, Oracle, PMC, Samsung, SanDisk and Seagate.
In September 2016, the CompactFlash Association announced that it will be releasing a new memory card specification, CFexpress, which uses NVMe.
Comparison with AHCI
The Advanced Host Controller Interface (AHCI) comes with the benefit of wide software compatibility, but as a downside does not deliver optimal performance when used with SSDs connected via the PCI Express bus. As a logical interface, AHCI was developed when the purpose of a host bus adapter (HBA) in a system was to connect the CPU/memory subsystem with a much slower storage subsystem based on rotating magnetic media. As a result, AHCI introduces certain inefficiencies when used with SSD devices, which behave much more like DRAM than like spinning media.
The NVMe device interface has been designed from the ground up, capitalizing on the low latency and parallelism of PCI Express SSDs, and complementing the parallelism of contemporary CPUs, platforms and applications. At a high level, the basic advantages of NVMe over AHCI relate to its ability to exploit parallelism in host hardware and software, manifested by the differences in command queue depths, efficiency of interrupt processing, the number of uncacheable register accesses, etc., resulting in various performance improvements.
The table below summarizes high-level differences between the NVMe and AHCI logical device interfaces.