In measure theory and probability, the monotone class theorem connects monotone classes and sigma-algebras. The theorem says that the smallest monotone class containing an algebra of sets G is precisely the smallest σ-algebra containing G. It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem.
Contents
Definition of a monotone class
A monotone class in a set
Statement
Let G be an algebra of sets and define M(G) to be the smallest monotone class containing G. Then M(G) is precisely the σ-algebra generated by G, i.e. σ(G) = M(G)
Statement
Let
(1) If
(2) If
(3) If
Then
Proof
The following argument originates in Rick Durrett's Probability: Theory and Examples.
The assumption
Results and Applications
As a corollary, if G is a ring of sets, then the smallest monotone class containing it coincides with the sigma-ring of G.
By invoking this theorem, one can use monotone classes to help verify that a certain collection of subsets is a sigma-algebra.
The monotone class theorem for functions can be a powerful tool that allows statements about particularly simple classes of functions to be generalized to arbitrary bounded and measurable functions.