In mathematics, the Milne-Thomson method is a method of finding a holomorphic function, whose real or imaginary part is given. The method greatly simplifies the process of finding the holomorphic function whose real or imaginary or any combination of the two parts is given. It is named after Louis Melville Milne-Thomson.
Let                     f        (        z        )        =        u        (        x        ,        y        )        +        i        v        (        x        ,        y        )                 be any holomorphic function.
Let                     z        =        x        +        i        y                 and                                                         z              ¯                                               =        x        −        i        y                 where x and y are real.
Hence,
                                                                        x                                                            =                                                                            z                      +                                                                                                    z                            ¯                                                                                                                2                                                                                                                        and                                 y                                                            =                                                                            z                      −                                                                                                    z                            ¯                                                                                                                                      2                      i                                                                                                                  Therefore,                     f        (        z        )        =        u        (        x        ,        y        )        +        i        v        (        x        ,        y        )                 is equal to
                    f        (        z        )        =        u                  (                                                    z                +                                                                            z                      ¯                                                                                  2                                           ,                                                    z                −                                                                            z                      ¯                                                                                                  2                i                                              )                +        i        v                  (                                                    z                +                                                                            z                      ¯                                                                                  2                                           ,                                                    z                −                                                                            z                      ¯                                                                                                  2                i                                              )                        This can be regarded as an identity in two independent variables                     z                 and                                                         z              ¯                                                       . We can therefore, put                     z        =                                            z              ¯                                                        and get                     f        (        z        )        =        u        (        z        ,        0        )        +        i        v        (        z        ,        0        )                
So,                     f        (        z        )                 can be obtained in terms of                     z                 simply by putting                     x        =        z                 and                     y        =        0                 in                     f        (        z        )        =        u        (        x        ,        y        )        +        i        v        (        x        ,        y        )                 when                     f        (        z        )                 is a holomorphic function.
Now,                               f          ′                (        z        )        =                                            ∂              u                                      ∂              x                                      +        i                                            ∂              v                                      ∂              x                                              .
Since,                     f        (        z        )                 is holomorphic, hence Cauchy–Riemann equations are satisfied. Hence,                               f          ′                (        z        )        =                                            ∂              u                                      ∂              x                                      −        i                                            ∂              u                                      ∂              y                                              .
Let                                                         ∂              u                                      ∂              x                                      =        Φ        (        x        ,        y        )                 and                                                         ∂              u                                      ∂              y                                      =        Ψ        (        x        ,        y        )                .
Then
                              f          ′                (        z        )        =                                            ∂              u                                      ∂              x                                      −        i                                            ∂              u                                      ∂              y                                                                            f          ′                (        z        )        =        Φ        (        x        ,        y        )        −        i        Ψ        (        x        ,        y        )                Now, putting                     x        =        z                 and                     y        =        0                 in the above equation, we get
                              f          ′                (        z        )        =        Φ        (        z        ,        0        )        −        i        Ψ        (        z        ,        0        )        .                        Integrating both sides of the above equation we get
                    ∫                  f          ′                (        z        )                d        z        =        ∫        Φ        (        z        ,        0        )                d        z        −        i        ∫        Ψ        (        z        ,        0        )                d        z                or
                    f        (        z        )        =        ∫                  f          ′                (        z        )                d        z        =        ∫        Φ        (        z        ,        0        )                d        z        −        i        ∫        Ψ        (        z        ,        0        )                d        z        +        c                which is the required holomorphic function.
Let                     u        (        x        ,        y        )        =                  x                      4                          −        6                  x                      2                                    y                      2                          +                  y                      4                                  , and let the desired holomorphic function be                     f        (        z        )        =        u        (        x        ,        y        )        +        i        v        (        x        ,        y        )                
Then as per the above process we know that
                              f          ′                (        z        )        =                                            ∂              u              (              x              ,              y              )                                      ∂              x                                      +        i                                            ∂              v              (              x              ,              y              )                                      ∂              x                                      .                But as                     f        (        z        )                 is holomorphic, so it satisfies Cauchy–Riemann equations.
Hence,                                                         ∂              u              (              x              ,              y              )                                      ∂              x                                      =                                            ∂              v              (              x              ,              y              )                                      ∂              y                                               and                                                         ∂              u              (              x              ,              y              )                                      ∂              y                                      =        −                                            ∂              v              (              x              ,              y              )                                      ∂              x                                              
Or                               u                      x                          =                  v                      y                                   and                               u                      y                          =        −                  v                      x                                  .
Substituting these values in                               f          ′                (        z        )                 we get,
                              f          ′                (        z        )        =                                            ∂              u              (              x              ,              y              )                                      ∂              x                                      −        i                                            ∂              u              (              x              ,              y              )                                      ∂              y                                              Hence,
                              f          ′                (        z        )        =        (        4                  x                      3                          −        12        x                  y                      2                          )        −        i        (        −        12                  x                      2                          y        +        4                  y                      3                          )                This can be written as                               f          ′                (        z        )        =        Φ        (        x        ,        y        )        −        i        Ψ        (        x        ,        y        )                
where,                     Φ        (        x        ,        y        )        =        (        4                  x                      3                          −        12        x                  y                      2                          )                 and                     Ψ        (        x        ,        y        )        =        −        12                  x                      2                          y        +        4                  y                      3                                  .
Rewriting                               f          ′                (        z        )        =        Φ        (        x        ,        y        )        −        i        Ψ        (        x        ,        y        )                 using                     x        =        z                 and                     y        =        0                
                              f          ′                (        z        )        =        4                  z                      3                          −        i        (        0        )                Integrating both sides w.r.t                     d        z                 we get,
                    ∫                  f          ′                (        z        )                d        z        =        ∫        4                  z                      3                          d        z        +        ∫        0                d        z                Hence,                     f        (        z        )        =                  z                      4                          +        c                 is the required holomorphic function.