Suvarna Garge (Editor)

Majorana fermion

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Majorana fermion

A Majorana fermion (/məˈrɒnə ˈfɛərmɒn/), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesized by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

Contents

With the exception of the neutrino, all of the Standard Model fermions are known to behave as Dirac fermions at low energy (after electroweak symmetry breaking). The nature of the neutrino is not settled; it may be either Dirac or Majorana. In condensed matter physics, Majorana fermions exist as quasiparticle excitations in superconductors and can be used to form Majorana bound states governed by non-abelian statistics.

Theory

The concept goes back to Majorana's suggestion in 1937 that neutral spin-1/2 particles can be described by a real wave equation (the Majorana equation), and would therefore be identical to their antiparticle (because the wave functions of particle and antiparticle are related by complex conjugation).

The difference between Majorana fermions and Dirac fermions can be expressed mathematically in terms of the creation and annihilation operators of second quantization. The creation operator γ j creates a fermion in quantum state j (described by a real wave function), whereas the annihilation operator γ j annihilates it (or, equivalently, creates the corresponding antiparticle). For a Dirac fermion the operators γ j and γ j are distinct, whereas for a Majorana fermion they are identical. The ordinary fermionic annihilation and creation operators f and f can be written in terms of two Majorana operators γ 1 and γ 2 by

f = ( γ 1 + i γ 2 ) / 2 , f = ( γ 1 i γ 2 ) / 2 .

In supersymmetry models, neutralinos — superpartners of gauge bosons and Higgs bosons — are Majorana.

Elementary particles

Because particles and antiparticles have opposite conserved charges, Majorana fermions have zero charge. All of the elementary fermions of the Standard Model have gauge charges, so they cannot have fundamental Majorana masses. However, the right-handed sterile neutrinos introduced to explain neutrino oscillation could have Majorana masses. If they do, then at low energy (after electroweak symmetry breaking), by the seesaw mechanism, the neutrino fields would naturally behave as six Majorana fields, with three expected to have very high masses (comparable to the GUT scale) and the other three expected to have very low masses (below 1 eV). If right-handed neutrinos exist but do not have a Majorana mass, the neutrinos would instead behave as three Dirac fermions and their antiparticles with masses coming directly from the Higgs interaction, like the other Standard Model fermions.

The seesaw mechanism is appealing because it would naturally explain why the observed neutrino masses are so small. However, if the neutrinos are Majorana then they violate the conservation of lepton number and even B − L.

Neutrinoless double beta decay, which can be viewed as two beta decay events with the produced antineutrinos immediately annihilating with one another, is only possible if neutrinos are their own antiparticles. Experiments are underway to search for this type of decay.

The high-energy analog of the neutrinoless double beta decay process is the production of same sign charged lepton pairs at hadron colliders; it is being searched for by both the ATLAS and CMS experiments at the Large Hadron Collider. In theories based on left–right symmetry, there is a deep connection between these processes. In the most accepted explanation of the smallness of neutrino mass, the seesaw mechanism, the neutrino is naturally a Majorana fermion.

Majorana fermions cannot possess intrinsic electric or magnetic moments, only toroidal moments. Such minimal interaction with electromagnetic fields makes them potential candidates for cold dark matter.

Majorana bound states

In superconducting materials, Majorana fermions can emerge as (non-fundamental) quasiparticles (which are more commonly referred as Bogoliubov quasiparticles in condensed matter.). This becomes possible because a quasiparticle in a superconductor is its own antiparticle. Majorana fermions (i.e. the Bogoliubov quasiparticles) in superconductors were observed since the first tunneling experiments.

Mathematically, the superconductor imposes electron hole "symmetry" on the quasiparticle excitations, relating the creation operator γ ( E ) at energy E to the annihilation operator γ ( E ) at energy E . Majorana fermions can be bound to a defect at zero energy, and then the combined objects are called Majorana bound states or Majorana zero modes. This name is more appropriate than Majorana fermion (although the distinction is not always made in the literature), because the statistics of these objects is no longer fermionic. Instead, the Majorana bound states are an example of non-abelian anyons: interchanging them changes the state of the system in a way that depends only on the order in which the exchange was performed. The non-abelian statistics that Majorana bound states possess allows them to be used as a building block for a topological quantum computer.

A quantum vortex in certain superconductors or superfluids can trap midgap states, so this is one source of Majorana bound states. Shockley states at the end points of superconducting wires or line defects are an alternative, purely electrical, source. An altogether different source uses the fractional quantum Hall effect as a substitute for the superconductor.

Experiments in superconductivity

In 2008, Fu and Kane provided a groundbreaking development by theoretically predicting that Majorana bound states can appear at the interface between topological insulators and superconductors. Many proposals of a similar spirit soon followed, where it was shown that Majorana bound states can appear even without any topological insulator. An intense search to provide experimental evidence of Majorana bound states in superconductors first produced some positive results in 2012. A team from the Kavli Institute of Nanoscience at Delft University of Technology in the Netherlands reported an experiment involving indium antimonide nanowires connected to a circuit with a gold contact at one end and a slice of superconductor at the other. When exposed to a moderately strong magnetic field the apparatus showed a peak electrical conductance at zero voltage that is consistent with the formation of a pair of Majorana bound states, one at either end of the region of the nanowire in contact with the superconductor. This type of bounded state with zero energy was soon detected by several other groups in similar hybrid devices.

This experiment from Delft marks a possible verification of independent 2010 theoretical proposals from two groups predicting the solid state manifestation of Majorana bound states in semiconducting wires. However, it was also pointed out that some other trivial non-topological bounded states could highly mimic the zero voltage conductance peak of Majorana bound state. The subtle relation between those trivial bound states and Majorana bound states was reported by the researchers in Niels Bohr Institute, who can directly "watch" coalescing Andreev bound states evolving into Majorana bound states, thanks to a much more cleaner semiconductor-superconductor hybrid system.

In 2014, evidence of Majorana bound states was observed using a low-temperature scanning tunneling microscope, by scientists at Princeton University. It was suggested that Majorana bound states appeared at the edges of a chain of iron atoms formed on the surface of superconducting lead. Physicist Jason Alicea of California Institute of Technology, not involved in the research, said the study offered "compelling evidence" for Majorana fermions but that "we should keep in mind possible alternative explanations—even if there are no immediately obvious candidates".

A proof of the existence of Majorana fermions in a solid state material as quasiparticles was announced by researchers at Oak Ridge National Laboratory, working in collaboration with Max Planck Institute and University of Cambridge on 4 April 2016.

Majorana bound states in quantum error correction

Majorana bound states can also be realized in quantum error correcting codes. This is done by creating so called 'twist defects' in codes such as the Toric code which carry unpaired Majorana modes. The braiding of Majoranas realized in such a way forms a projective representation of the braid group.

Such a realization of Majoranas would allow them to be used to store and process quantum information within a quantum computation. Though the codes typically have no Hamiltonian to provide suppression of errors, fault-tolerance would be provided by the underlying quantum error correcting code.

References

Majorana fermion Wikipedia


Similar Topics