Supriya Ghosh (Editor)

List of prime numbers

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is not prime nor composite.

Contents

The first 1000 prime numbers

The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.

(sequence A000040 in the OEIS).

The Goldbach conjecture verification project reports that it has computed all primes below 4×1018. That means 95,676,260,903,887,607 primes (nearly 1017), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes below a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) below 1023. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2×1022) below 1024, if the Riemann hypothesis is true.

Lists of primes by type

Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.

Additive primes

Primes such that the sum of digits is a prime.

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131 ( A046704)

Annihilating primes

Let d(p) be the shadow of the sequence f(n) = seq1−1(n) (that gives the number of sequences without repetitions that can be obtained from n distinct objects), i.e. the count of sequence entries f(0), f(1), f(2), ...., f(h - 1) divisible by an integer h. If d(p) = 0, then p is an annihilating prime.

3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191, 199 ( A072456)

Bell number primes

Primes that are the number of partitions of a set with n members.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6,539 digits. ( A051131)

Carol primes

Of the form (2n−1)2 − 2.

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 ( A091516)

Centered decagonal primes

Of the form 5(n2 + n) + 1.

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 ( A090562)

Centered heptagonal primes

Of the form (7n2 − 7n + 2) / 2.

43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (primes in  A069099)

Centered square primes

Of the form n2 + (n+1)2.

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 ( A027862)

Centered triangular primes

Of the form (3n2 + 3n + 2) / 2.

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 ( A125602)

Chen primes

Where p is prime and p+2 is either a prime or semiprime.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 ( A109611)

Circular primes

A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 ( A068652)

Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):

2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 ( A016114)

All repunit primes are circular.

Cousin primes

Where (p, p+4) are both prime.

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) ( A023200,  A046132)

Cuban primes

Of the form x 3 y 3 x y , x = y+1.

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 ( A002407)

Of the form x 3 y 3 x y , x = y+2.

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 ( A002648)

Cullen primes

Of the form n×2n + 1.

3, 393050634124102232869567034555427371542904833 ( A050920)

Dihedral primes

Primes that remain prime when read upside down or mirrored in a seven-segment display.

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 ( A134996)

Double factorial primes

Of the form n!! + 1. Values of n:

0, 1, 2, 518, 33416, 37310, 52608 ( A080778)

Note that n = 0 and n = 1 produce the same prime, namely 2.

Of the form n!! − 1. Values of n:

3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, 728, 842, 888, 2328, 3326, 6404, 8670, 9682, 27056, 44318 ( A007749)

Double Mersenne primes

A subset of Mersenne primes of the form 22p−1 − 1 for prime p.

7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in  A077586)

As of 2011, these are the only known double Mersenne primes, and number theorists think these are probably the only double Mersenne primes.

Eisenstein primes without imaginary part

Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 ( A003627)

Emirps

Primes that become a different prime when their decimal digits are reversed. The name "emirp" is obtained by reversing the word "prime".

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 ( A006567)

Euclid primes

Of the form pn# + 1 (a subset of primorial primes).

3, 7, 31, 211, 2311, 200560490131 ( A018239)

Euler irregular primes

A prime p that divides Euler number E 2 n for some 0 2 n p 3 .

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 ( A120337)

Euler (p, p−3) irregular primes

Primes p such that ( p , p 3 ) is an Euler irregular pair.

149, 241, 2946901 ( A198245)

Even prime

Of the form 2n.

2

The only even prime is 2. It is therefore sometimes called "the oddest prime" as a pun on the non-mathematical meaning of "odd".

Factorial primes

Of the form n! − 1 or n! + 1.

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 ( A088054)

Fermat primes

Of the form 22n + 1.

3, 5, 17, 257, 65537 ( A019434)

As of 2013 these are the only known Fermat primes, and conjecturally the only Fermat primes.

Fibonacci primes

Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 ( A005478)

Fortunate primes

Fortunate numbers that are prime (it has been conjectured they all are).

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 ( A046066)

Gaussian primes

Prime elements of the Gaussian integers (primes of the form 4n + 3).

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 ( A002145)

Generalized Fermat primes base 10

Of the form 102n + 1.

11, 101

As of April 2011, these are the only known generalized Fermat primes in base 10.

Genocchi number primes

17

The only positive prime Genocchi number is 17.

Gilda's primes

Gilda's numbers that are prime. A number n is a Gilda's number, if when a Fibonacci sequence is formed with the first term equal to the absolute value of the successive differences between consecutive digits of n and the second term equal to the sum of the decimal digits of n, n itself appears as a term in this Fibonacci sequence.

29, 683, 997, 2207, 30571351 ( A046850; another entry  A135995 is erroneous)

Good primes

Primes pn for which pn2 > pni pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 ( A028388)

Happy primes

Happy numbers that are prime.

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 ( A035497)

Harmonic primes

Primes p for which there are no solutions to Hk ≡ 0 (mod p) and Hk ≡ −ωp (mod p) for 1 ≤ k ≤ p−2, where Hk denotes the k-th harmonic number and ωp denotes the Wolstenholme quotient.

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 ( A092101)

Higgs primes for squares

Primes p for which p−1 divides the square of the product of all earlier terms.

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 ( A007459)

Highly cototient number primes

Primes that are a cototient more often than any integer below it except 1.

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 ( A105440)

Irregular primes

Odd primes p that divide the class number of the p-th cyclotomic field.

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 ( A000928)

(p, p−5) irregular primes

Primes p such that (p, p−5) is an irregular pair.

37

(p, p−9) irregular primes

Primes p such that (p, p−9) is an irregular pair.

67, 877 ( A212557)

Isolated primes

Primes p such that neither p−2 nor p+2 is prime.

2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ( A007510)

Kynea primes

Of the form (2n + 1)2 − 2.

2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207 ( A091514)

Left-truncatable primes

Primes that remain prime when the leading decimal digit is successively removed.

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 ( A024785)

Leyland primes

Of the form xy + yx, with 1 < x ≤ y.

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 ( A094133)

Long primes

Primes p for which, in a given base b, b p 1 1 p gives a cyclic number. They are also called full reptend primes. Primes p for base 10:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 ( A001913)

Lucas primes

Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 ( A005479)

Lucky primes

Lucky numbers that are prime.

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 ( A031157)

Markov primes

Primes p for which there exist integers x and y such that x2 + y2 + p2 = 3xyp.

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 1686049, 2922509, 3276509, 94418953, 321534781, 433494437, 780291637, 1405695061, 2971215073, 19577194573, 25209506681 (primes in  A002559)

Mersenne primes

Of the form 2n − 1.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 ( A000668)

As of 2016, there are 49 known Mersenne primes. The 13th, 14th, and 49th have respectively 157, 183, and 22,338,618 digits.

Mersenne prime exponents

Primes p such that 2p − 1 is prime.

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657 ( A000043)

As of January 2016 five more are known to be in the sequence, but it is not known whether they are the next:
37156667, 42643801, 43112609, 57885161, 74207281

Mills primes

Of the form ⌊θ3n⌋, where θ is Mills' constant. This form is prime for all positive integers n.

2, 11, 1361, 2521008887, 16022236204009818131831320183 ( A051254)

Minimal primes

Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 ( A071062)

Motzkin primes

Primes that are the number of different ways of drawing non-intersecting chords on a circle between n points.

2, 127, 15511, 953467954114363 ( A092832)

Newman–Shanks–Williams primes

Newman–Shanks–Williams numbers that are prime.

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 ( A088165)

Non-generous primes

Primes p for which the least positive primitive root is not a primitive root of p2.

2, 40487, 6692367337 ( A055578)

Odd primes

Of the form 2n + 1.

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199... ( A065091)

All prime numbers except 2 are odd.

Padovan primes

Primes in the Padovan sequence P(0) = P(1) = P(2) = 1, P(n) = P(n−2) + P(n−3).

2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057, 1363005552434666078217421284621279933627102780881053358473 ( A100891)

Palindromic primes

Primes that remain the same when their decimal digits are read backwards.

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 ( A002385)

Palindromic wing primes

Primes of the form a ( 10 m 1 ) 9 ± b × 10 m 1 2 with 0 a ± b < 10 . This means all digits except the middle digit are equal.

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 ( A077798)

Partition primes

Partition function values that are prime.

2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 ( A049575)

Pell primes

Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2.

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 ( A086383)

Permutable primes

Any permutation of the decimal digits is a prime.

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 ( A003459)

It seems likely that all further permutable primes are repunits, i.e. contain only the digit 1.

Perrin primes

Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n−2) + P(n−3).

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 ( A074788)

Pierpont primes

Of the form 2u3v + 1 for some integers u,v ≥ 0.

These are also class 1- primes.

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 ( A005109)

Pillai primes

Primes p for which there exist n > 0 such that p divides n!+ 1 and n does not divide p−1.

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 ( A063980)

Primes of the form n4 + 1

Of the form n4 + 1.

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 ( A037896)

Primeval primes

Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 ( A119535)

Primorial primes

Of the form pn# ± 1.

3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of  A057705 and  A018239)

Proth primes

Of the form k×2n + 1, with odd k and k < 2n.

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 ( A080076)

Pythagorean primes

Of the form 4n + 1.

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 ( A002144)

Prime quadruplets

Where (p, p+2, p+6, p+8) are all prime.

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) ( A007530,  A136720,  A136721,  A090258)

Primes of binary quadratic form

Of the form x2 + xy + 2y2, with non-negative integers x and y.

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821 ( A106856)

Quartan primes

Of the form x4 + y4, where x,y > 0.

2, 17, 97, 257, 337, 641, 881 ( A002645)

Ramanujan primes

Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 ( A104272)

Regular primes

Primes p that do not divide the class number of the p-th cyclotomic field.

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 ( A007703)

Repunit primes

Primes containing only the decimal digit 1.

11, 1111111111111111111, 11111111111111111111111 ( A004022)

The next have 317 and 1,031 digits.

Primes in residue classes

Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.

Three cases have their own entry: 2n+1 are the odd primes, 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes.

2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 ( A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 ( A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 ( A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 ( A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 ( A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 ( A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 ( A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 ( A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 ( A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 ( A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 ( A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 ( A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 ( A030433)
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 ( A068228)
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281 ( A040117)
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283 ( A068229)
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311 ( A068231)
...

10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

Right-truncatable primes

Primes that remain prime when the last decimal digit is successively removed.

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 ( A024770)

Safe primes

Where p and (p−1) / 2 are both prime.

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 ( A005385)

Self primes in base 10

Primes that cannot be generated by any integer added to the sum of its decimal digits.

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 ( A006378)

Sexy primes

Where (p, p+6) are both prime.

(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) ( A023201,  A046117)

Smarandache–Wellin primes

Primes that are the concatenation of the first n primes written in decimal.

2, 23, 2357 ( A069151)

The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.

Solinas primes

Of the form 2a ± 2b ± 1, where 0 < b < a.

3, 5, 7, 11, 13 ( A165255)

Sophie Germain primes

Where p and 2p+1 are both prime.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 ( A005384)

Star primes

Of the form 6n(n − 1) + 1.

13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313, 5581, 5953, 6337, 6733, 7561, 7993, 8893, 10333, 10837, 11353, 12421, 12973, 13537, 15913, 18481 ( A083577)

Stern primes

Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.

2, 3, 17, 137, 227, 977, 1187, 1493 ( A042978)

As of 2011, these are the only known Stern primes, and possibly the only existing.

Super-primes

Primes with a prime index in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 ( A006450)

Supersingular primes

There are exactly fifteen supersingular primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 ( A002267)

Swinging primes

Primes of the form n ± 1 , where n denotes the swinging factorial, which is defined in terms of the double swinging factorial as n = ( n 1 ) n and n = { 1   n 0 ( n 2 ) n [ n odd ] ( 4 / n ) [ n even ] n > 0

2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011 ( A163074)

Thabit number primes

Of the form 3×2n − 1.

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 ( A007505)

The primes of the form 3×2n + 1 are related.

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 ( A039687)

Prime triplets

Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) ( A007529,  A098414,  A098415)

Twin primes

Where (p, p+2) are both prime.

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) ( A001359,  A006512)

Two-sided primes

Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 ( A020994)

Ulam number primes

Ulam numbers that are prime.

2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897 ( A068820)

Unique primes

The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 ( A040017)

Wagstaff primes

Of the form (2n+1) / 3.

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 ( A000979)

Values of n:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 ( A000978)

Wall–Sun–Sun primes

A prime p > 5, if p2 divides the Fibonacci number F p ( p 5 ) , where the Legendre symbol ( p 5 ) is defined as

( p 5 ) = { 1 if p ± 1 ( mod 5 ) 1 if p ± 2 ( mod 5 ) .

As of 2015, no Wall-Sun-Sun primes are known.

Wedderburn-Etherington number primes

Wedderburn-Etherington numbers that are prime.

2, 3, 11, 23, 983, 2179, 24631, 3626149, 253450711, 596572387 ( A136402)

Weakly prime numbers

Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.

294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 ( A050249)

Wieferich primes

Primes p such that ap − 1 ≡ 1 (mod p2) for fixed integer a > 1.

2p − 1 ≡ 1 (mod p2): 1093, 3511 ( A001220)
3p − 1 ≡ 1 (mod p2): 11, 1006003 ( A014127)
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 ( A123692)
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 ( A212583)
7p − 1 ≡ 1 (mod p2): 5, 491531 ( A123693)
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 ( A045616)
11p − 1 ≡ 1 (mod p2): 71
12p − 1 ≡ 1 (mod p2): 2693, 123653 ( A111027)
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 ( A128667)
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 ( A234810)
15p − 1 ≡ 1 (mod p2): 29131, 119327070011 ( A242741)
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 ( A128668)
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 ( A244260)
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 ( A090968)
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 ( A242982)
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 ( A128669)
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801

As of 2015, these are all known Wieferich primes with a ≤ 25.

Wilson primes

Primes p for which p2 divides (p−1)! + 1.

5, 13, 563 ( A007540)

As of 2015, these are the only known Wilson primes.

Wolstenholme primes

Primes p for which the binomial coefficient ( 2 p 1 p 1 ) 1 ( mod p 4 ) .

16843, 2124679 ( A088164)

As of 2015, these are the only known Wolstenholme primes.

Woodall primes

Of the form n×2n − 1.

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 ( A050918)

References

List of prime numbers Wikipedia


Similar Topics