Suvarna Garge (Editor)

List of integrals of rational functions

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

The following is a list of integrals (antiderivative functions) of rational functions. For other types of functions, see lists of integrals.

Contents

Miscellaneous integrands

f ( x ) f ( x ) d x = ln | f ( x ) | + C 1 x 2 + a 2 d x = 1 a arctan x a + C 1 x 2 a 2 d x = { 1 a arctanh x a = 1 2 a ln a x a + x + C (for  | x | < | a | ) 1 a arccoth x a = 1 2 a ln x a x + a + C (for  | x | > | a | ) d x x 2 n + 1 = k = 1 2 n 1 { 1 2 n 1 [ sin ( ( 2 k 1 ) π 2 n ) arctan [ ( x cos ( ( 2 k 1 ) π 2 n ) ) csc ( ( 2 k 1 ) π 2 n ) ] ] 1 2 n [ cos ( ( 2 k 1 ) π 2 n ) ln | x 2 2 x cos ( ( 2 k 1 ) π 2 n ) + 1 | ] } + C


Any rational function can be integrated using partial fractions in integration, by decomposing the rational function into a sum of functions of the form:

a ( x b ) n , and a x + b ( ( x c ) 2 + d 2 ) n .

Integrands of the form xm(a x + b)n

1 a x + b d x = 1 a ln | a x + b | + C More generally, 1 a x + b d x = { 1 a ln | a x + b | + C a x + b < 0 1 a ln | a x + b | + C + a x + b > 0 ( a x + b ) n d x = ( a x + b ) n + 1 a ( n + 1 ) + C (for  n 1 ) (Cavalieri's quadrature formula) x a x + b d x = x a b a 2 ln | a x + b | + C x ( a x + b ) 2 d x = b a 2 ( a x + b ) + 1 a 2 ln | a x + b | + C x ( a x + b ) n d x = a ( 1 n ) x b a 2 ( n 1 ) ( n 2 ) ( a x + b ) n 1 + C (for  n { 1 , 2 } ) x ( a x + b ) n d x = a ( n + 1 ) x b a 2 ( n + 1 ) ( n + 2 ) ( a x + b ) n + 1 + C (for  n { 1 , 2 } ) x 2 a x + b d x = b 2 ln ( | a x + b | ) a 3 + a x 2 2 b x 2 a 2 + C x 2 ( a x + b ) 2 d x = 1 a 3 ( a x 2 b ln | a x + b | b 2 a x + b ) + C x 2 ( a x + b ) 3 d x = 1 a 3 ( ln | a x + b | + 2 b a x + b b 2 2 ( a x + b ) 2 ) + C x 2 ( a x + b ) n d x = 1 a 3 ( ( a x + b ) 3 n ( n 3 ) + 2 b ( a x + b ) 2 n ( n 2 ) b 2 ( a x + b ) 1 n ( n 1 ) ) + C (for  n { 1 , 2 , 3 } ) 1 x ( a x + b ) d x = 1 b ln | a x + b x | + C 1 x 2 ( a x + b ) d x = 1 b x + a b 2 ln | a x + b x | + C 1 x 2 ( a x + b ) 2 d x = a ( 1 b 2 ( a x + b ) + 1 a b 2 x 2 b 3 ln | a x + b x | ) + C

Integrands of the form xm / (a x2 + b x + c)n

For a 0 :

1 a x 2 + b x + c d x = { 2 4 a c b 2 arctan 2 a x + b 4 a c b 2 + C (for  4 a c b 2 > 0 ) 1 b 2 4 a c ln | 2 a x + b b 2 4 a c 2 a x + b + b 2 4 a c | + C = { 2 b 2 4 a c a r c t a n h 2 a x + b b 2 4 a c + C (for  | 2 a x + b | < b 2 4 a c ) 2 b 2 4 a c a r c c o t h 2 a x + b b 2 4 a c + C (else) (for  4 a c b 2 < 0 ) 2 2 a x + b + C (for  4 a c b 2 = 0 ) x a x 2 + b x + c d x = 1 2 a ln | a x 2 + b x + c | b 2 a d x a x 2 + b x + c + C m x + n a x 2 + b x + c d x = { m 2 a ln | a x 2 + b x + c | + 2 a n b m a 4 a c b 2 arctan 2 a x + b 4 a c b 2 + C (for  4 a c b 2 > 0 ) m 2 a ln | a x 2 + b x + c | 2 a n b m a b 2 4 a c a r c t a n h 2 a x + b b 2 4 a c + C (for  4 a c b 2 < 0 ) m 2 a ln | a x 2 + b x + c | 2 a n b m a ( 2 a x + b ) + C (for  4 a c b 2 = 0 ) 1 ( a x 2 + b x + c ) n d x = 2 a x + b ( n 1 ) ( 4 a c b 2 ) ( a x 2 + b x + c ) n 1 + ( 2 n 3 ) 2 a ( n 1 ) ( 4 a c b 2 ) 1 ( a x 2 + b x + c ) n 1 d x + C x ( a x 2 + b x + c ) n d x = b x + 2 c ( n 1 ) ( 4 a c b 2 ) ( a x 2 + b x + c ) n 1 b ( 2 n 3 ) ( n 1 ) ( 4 a c b 2 ) 1 ( a x 2 + b x + c ) n 1 d x + C 1 x ( a x 2 + b x + c ) d x = 1 2 c ln | x 2 a x 2 + b x + c | b 2 c 1 a x 2 + b x + c d x + C

Integrands of the form xm (a + b xn)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • x m ( a + b x n ) p d x = x m + 1 ( a + b x n ) p m + n p + 1 + a n p m + n p + 1 x m ( a + b x n ) p 1 d x x m ( a + b x n ) p d x = x m + 1 ( a + b x n ) p + 1 a n ( p + 1 ) + m + n ( p + 1 ) + 1 a n ( p + 1 ) x m ( a + b x n ) p + 1 d x x m ( a + b x n ) p d x = x m + 1 ( a + b x n ) p m + 1 b n p m + 1 x m + n ( a + b x n ) p 1 d x x m ( a + b x n ) p d x = x m n + 1 ( a + b x n ) p + 1 b n ( p + 1 ) m n + 1 b n ( p + 1 ) x m n ( a + b x n ) p + 1 d x x m ( a + b x n ) p d x = x m n + 1 ( a + b x n ) p + 1 b ( m + n p + 1 ) a ( m n + 1 ) b ( m + n p + 1 ) x m n ( a + b x n ) p d x x m ( a + b x n ) p d x = x m + 1 ( a + b x n ) p + 1 a ( m + 1 ) b ( m + n ( p + 1 ) + 1 ) a ( m + 1 ) x m + n ( a + b x n ) p d x

    Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x ) m ( c + d x ) n ( e + f x ) p by setting B to 0.
  • ( A + B x ) ( a + b x ) m ( c + d x ) n ( e + f x ) p d x = ( A b a B ) ( a + b x ) m + 1 ( c + d x ) n ( e + f x ) p + 1 b ( m + 1 ) ( a f b e ) + 1 b ( m + 1 ) ( a f b e ) ( A + B x ) ( a + b x ) m ( c + d x ) n ( e + f x ) p d x = B ( a + b x ) m ( c + d x ) n + 1 ( e + f x ) p + 1 d f ( m + n + p + 2 ) + 1 d f ( m + n + p + 2 ) ( A + B x ) ( a + b x ) m ( c + d x ) n ( e + f x ) p d x = ( A b a B ) ( a + b x ) m + 1 ( c + d x ) n + 1 ( e + f x ) p + 1 ( m + 1 ) ( a d b c ) ( a f b e ) + 1 ( m + 1 ) ( a d b c ) ( a f b e )

    Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, p and q toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x n ) p ( c + d x n ) q and x m ( a + b x n ) p ( c + d x n ) q by setting m and/or B to 0.
  • x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = ( A b a B ) x m + 1 ( a + b x n ) p + 1 ( c + d x n ) q a b n ( p + 1 ) + 1 a b n ( p + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = B x m + 1 ( a + b x n ) p + 1 ( c + d x n ) q b ( m + n ( p + q + 1 ) + 1 ) + 1 b ( m + n ( p + q + 1 ) + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = ( A b a B ) x m + 1 ( a + b x n ) p + 1 ( c + d x n ) q + 1 a n ( b c a d ) ( p + 1 ) + 1 a n ( b c a d ) ( p + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = B x m n + 1 ( a + b x n ) p + 1 ( c + d x n ) q + 1 b d ( m + n ( p + q + 1 ) + 1 ) 1 b d ( m + n ( p + q + 1 ) + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = A x m + 1 ( a + b x n ) p + 1 ( c + d x n ) q + 1 a c ( m + 1 ) + 1 a c ( m + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = A x m + 1 ( a + b x n ) p + 1 ( c + d x n ) q a ( m + 1 ) 1 a ( m + 1 ) x m ( A + B x n ) ( a + b x n ) p ( c + d x n ) q d x = ( A b a B ) x m n + 1 ( a + b x n ) p + 1 ( c + d x n ) q + 1 b n ( b c a d ) ( p + 1 ) 1 b n ( b c a d ) ( p + 1 )

    Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x + c x 2 ) p when b 2 4 a c = 0 by setting m to 0.
  • ( d + e x ) m ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( a + b x + c x 2 ) p e ( m + 1 ) p ( d + e x ) m + 2 ( b + 2 c x ) ( a + b x + c x 2 ) p 1 e 2 ( m + 1 ) ( m + 2 p + 1 ) + p ( 2 p 1 ) ( 2 c d b e ) e 2 ( m + 1 ) ( m + 2 p + 1 ) ( d + e x ) m + 1 ( a + b x + c x 2 ) p 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( a + b x + c x 2 ) p e ( m + 1 ) p ( d + e x ) m + 2 ( b + 2 c x ) ( a + b x + c x 2 ) p 1 e 2 ( m + 1 ) ( m + 2 ) + 2 c p ( 2 p 1 ) e 2 ( m + 1 ) ( m + 2 ) ( d + e x ) m + 2 ( a + b x + c x 2 ) p 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = e ( m + 2 p + 2 ) ( d + e x ) m ( a + b x + c x 2 ) p + 1 ( p + 1 ) ( 2 p + 1 ) ( 2 c d b e ) + ( d + e x ) m + 1 ( b + 2 c x ) ( a + b x + c x 2 ) p ( 2 p + 1 ) ( 2 c d b e ) + e 2 m ( m + 2 p + 2 ) ( p + 1 ) ( 2 p + 1 ) ( 2 c d b e ) ( d + e x ) m 1 ( a + b x + c x 2 ) p + 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = e m ( d + e x ) m 1 ( a + b x + c x 2 ) p + 1 2 c ( p + 1 ) ( 2 p + 1 ) + ( d + e x ) m ( b + 2 c x ) ( a + b x + c x 2 ) p 2 c ( 2 p + 1 ) + e 2 m ( m 1 ) 2 c ( p + 1 ) ( 2 p + 1 ) ( d + e x ) m 2 ( a + b x + c x 2 ) p + 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( a + b x + c x 2 ) p e ( m + 2 p + 1 ) p ( 2 c d b e ) ( d + e x ) m + 1 ( b + 2 c x ) ( a + b x + c x 2 ) p 1 2 c e 2 ( m + 2 p ) ( m + 2 p + 1 ) + p ( 2 p 1 ) ( 2 c d b e ) 2 2 c e 2 ( m + 2 p ) ( m + 2 p + 1 ) ( d + e x ) m ( a + b x + c x 2 ) p 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = 2 c e ( m + 2 p + 2 ) ( d + e x ) m + 1 ( a + b x + c x 2 ) p + 1 ( p + 1 ) ( 2 p + 1 ) ( 2 c d b e ) 2 + ( d + e x ) m + 1 ( b + 2 c x ) ( a + b x + c x 2 ) p ( 2 p + 1 ) ( 2 c d b e ) + 2 c e 2 ( m + 2 p + 2 ) ( m + 2 p + 3 ) ( p + 1 ) ( 2 p + 1 ) ( 2 c d b e ) 2 ( d + e x ) m ( a + b x + c x 2 ) p + 1 d x ( d + e x ) m ( a + b x + c x 2 ) p d x = ( d + e x ) m ( b + 2 c x ) ( a + b x + c x 2 ) p 2 c ( m + 2 p + 1 ) + m ( 2 c d b e ) 2 c ( m + 2 p + 1 ) ( d + e x ) m 1 ( a + b x + c x 2 ) p d x ( d + e x ) m ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( b + 2 c x ) ( a + b x + c x 2 ) p ( m + 1 ) ( 2 c d b e ) + 2 c ( m + 2 p + 2 ) ( m + 1 ) ( 2 c d b e ) ( d + e x ) m + 1 ( a + b x + c x 2 ) p d x

    Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x + c x 2 ) p and ( d + e x ) m ( a + b x + c x 2 ) p by setting m and/or B to 0.
  • ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( A e ( m + 2 p + 2 ) B d ( 2 p + 1 ) + e B ( m + 1 ) x ) ( a + b x + c x 2 ) p e 2 ( m + 1 ) ( m + 2 p + 2 ) + 1 e 2 ( m + 1 ) ( m + 2 p + 2 ) p ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = ( d + e x ) m ( A b 2 a B ( b B 2 A c ) x ) ( a + b x + c x 2 ) p + 1 ( p + 1 ) ( b 2 4 a c ) + 1 ( p + 1 ) ( b 2 4 a c ) ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( A c e ( m + 2 p + 2 ) B ( c d + 2 c d p b e p ) + B c e ( m + 2 p + 1 ) x ) ( a + b x + c x 2 ) p c e 2 ( m + 2 p + 1 ) ( m + 2 p + 2 ) p c e 2 ( m + 2 p + 1 ) ( m + 2 p + 2 ) ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = ( d + e x ) m + 1 ( A ( b c d b 2 e + 2 a c e ) a B ( 2 c d b e ) + c ( A ( 2 c d b e ) B ( b d 2 a e ) ) x ) ( a + b x + c x 2 ) p + 1 ( p + 1 ) ( b 2 4 a c ) ( c d 2 b d e + a e 2 ) + ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = B ( d + e x ) m ( a + b x + c x 2 ) p + 1 c ( m + 2 p + 2 ) + 1 c ( m + 2 p + 2 ) ( d + e x ) m ( A + B x ) ( a + b x + c x 2 ) p d x = ( B d A e ) ( d + e x ) m + 1 ( a + b x + c x 2 ) p + 1 ( m + 1 ) ( c d 2 b d e + a e 2 ) + 1 ( m + 1 ) ( c d 2 b d e + a e 2 )

    Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p when b 2 4 a c = 0 by setting m to 0.
  • x m ( a + b x n + c x 2 n ) p d x = x m + 1 ( a + b x n + c x 2 n ) p m + 2 n p + 1 + n p x m + 1 ( 2 a + b x n ) ( a + b x n + c x 2 n ) p 1 ( m + 1 ) ( m + 2 n p + 1 ) b n 2 p ( 2 p 1 ) ( m + 1 ) ( m + 2 n p + 1 ) x m + n ( a + b x n + c x 2 n ) p 1 d x x m ( a + b x n + c x 2 n ) p d x = ( m + n ( 2 p 1 ) + 1 ) x m + 1 ( a + b x n + c x 2 n ) p ( m + 1 ) ( m + n + 1 ) + n p x m + 1 ( 2 a + b x n ) ( a + b x n + c x 2 n ) p 1 ( m + 1 ) ( m + n + 1 ) + 2 c p n 2 ( 2 p 1 ) ( m + 1 ) ( m + n + 1 ) x m + 2 n ( a + b x n + c x 2 n ) p 1 d x x m ( a + b x n + c x 2 n ) p d x = ( m + n ( 2 p + 1 ) + 1 ) x m n + 1 ( a + b x n + c x 2 n ) p + 1 b n 2 ( p + 1 ) ( 2 p + 1 ) x m + 1 ( b + 2 c x n ) ( a + b x n + c x 2 n ) p b n ( 2 p + 1 ) ( m n + 1 ) ( m + n ( 2 p + 1 ) + 1 ) b n 2 ( p + 1 ) ( 2 p + 1 ) x m n ( a + b x n + c x 2 n ) p + 1 d x x m ( a + b x n + c x 2 n ) p d x = ( m 3 n 2 n p + 1 ) x m 2 n + 1 ( a + b x n + c x 2 n ) p + 1 2 c n 2 ( p + 1 ) ( 2 p + 1 ) x m 2 n + 1 ( 2 a + b x n ) ( a + b x n + c x 2 n ) p 2 c n ( 2 p + 1 ) + ( m n + 1 ) ( m 2 n + 1 ) 2 c n 2 ( p + 1 ) ( 2 p + 1 ) x m 2 n ( a + b x n + c x 2 n ) p + 1 d x x m ( a + b x n + c x 2 n ) p d x = x m + 1 ( a + b x n + c x 2 n ) p m + 2 n p + 1 + n p x m + 1 ( 2 a + b x n ) ( a + b x n + c x 2 n ) p 1 ( m + 2 n p + 1 ) ( m + n ( 2 p 1 ) + 1 ) + 2 a n 2 p ( 2 p 1 ) ( m + 2 n p + 1 ) ( m + n ( 2 p 1 ) + 1 ) x m ( a + b x n + c x 2 n ) p 1 d x x m ( a + b x n + c x 2 n ) p d x = ( m + n + 2 n p + 1 ) x m + 1 ( a + b x n + c x 2 n ) p + 1 2 a n 2 ( p + 1 ) ( 2 p + 1 ) x m + 1 ( 2 a + b x n ) ( a + b x n + c x 2 n ) p 2 a n ( 2 p + 1 ) + ( m + n ( 2 p + 1 ) + 1 ) ( m + 2 n ( p + 1 ) + 1 ) 2 a n 2 ( p + 1 ) ( 2 p + 1 ) x m ( a + b x n + c x 2 n ) p + 1 d x x m ( a + b x n + c x 2 n ) p d x = x m n + 1 ( b + 2 c x n ) ( a + b x n + c x 2 n ) p 2 c ( m + 2 n p + 1 ) b ( m n + 1 ) 2 c ( m + 2 n p + 1 ) x m n ( a + b x n + c x 2 n ) p d x x m ( a + b x n + c x 2 n ) p d x = x m + 1 ( b + 2 c x n ) ( a + b x n + c x 2 n ) p b ( m + 1 ) 2 c ( m + n ( 2 p + 1 ) + 1 ) b ( m + 1 ) x m + n ( a + b x n + c x 2 n ) p d x

    Integrands of the form xm (A + B xn) (a + b xn + c x2n)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p and x m ( a + b x n + c x 2 n ) p by setting m and/or B to 0.
  • x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = x m + 1 ( A ( m + n ( 2 p + 1 ) + 1 ) + B ( m + 1 ) x n ) ( a + b x n + c x 2 n ) p ( m + 1 ) ( m + n ( 2 p + 1 ) + 1 ) + n p ( m + 1 ) ( m + n ( 2 p + 1 ) + 1 ) x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = x m n + 1 ( A b 2 a B ( b B 2 A c ) x n ) ( a + b x n + c x 2 n ) p + 1 n ( p + 1 ) ( b 2 4 a c ) + 1 n ( p + 1 ) ( b 2 4 a c ) x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = x m + 1 ( b B n p + A c ( m + n ( 2 p + 1 ) + 1 ) + B c ( m + 2 n p + 1 ) x n ) ( a + b x n + c x 2 n ) p c ( m + 2 n p + 1 ) ( m + n ( 2 p + 1 ) + 1 ) + n p c ( m + 2 n p + 1 ) ( m + n ( 2 p + 1 ) + 1 ) x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = x m + 1 ( A b 2 a b B 2 a A c + ( A b 2 a B ) c x n ) ( a + b x n + c x 2 n ) p + 1 a n ( p + 1 ) ( b 2 4 a c ) + 1 a n ( p + 1 ) ( b 2 4 a c ) x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = B x m n + 1 ( a + b x n + c x 2 n ) p + 1 c ( m + n ( 2 p + 1 ) + 1 ) 1 c ( m + n ( 2 p + 1 ) + 1 ) x m ( A + B x n ) ( a + b x n + c x 2 n ) p d x = A x m + 1 ( a + b x n + c x 2 n ) p + 1 a ( m + 1 ) + 1 a ( m + 1 )

    References

    List of integrals of rational functions Wikipedia


    Similar Topics