Miscellaneous integrands
∫
f
′
(
x
)
f
(
x
)
d
x
=
ln
|
f
(
x
)
|
+
C
∫
1
x
2
+
a
2
d
x
=
1
a
arctan
x
a
+
C
∫
1
x
2
−
a
2
d
x
=
{
−
1
a
arctanh
x
a
=
1
2
a
ln
a
−
x
a
+
x
+
C
(for
|
x
|
<
|
a
|
)
−
1
a
arccoth
x
a
=
1
2
a
ln
x
−
a
x
+
a
+
C
(for
|
x
|
>
|
a
|
)
∫
d
x
x
2
n
+
1
=
∑
k
=
1
2
n
−
1
{
1
2
n
−
1
[
sin
(
(
2
k
−
1
)
π
2
n
)
arctan
[
(
x
−
cos
(
(
2
k
−
1
)
π
2
n
)
)
csc
(
(
2
k
−
1
)
π
2
n
)
]
]
−
1
2
n
[
cos
(
(
2
k
−
1
)
π
2
n
)
ln
|
x
2
−
2
x
cos
(
(
2
k
−
1
)
π
2
n
)
+
1
|
]
}
+
C
Any rational function can be integrated using partial fractions in integration, by decomposing the rational function into a sum of functions of the form:
a
(
x
−
b
)
n
, and
a
x
+
b
(
(
x
−
c
)
2
+
d
2
)
n
.
∫
1
a
x
+
b
d
x
=
1
a
ln
|
a
x
+
b
|
+
C
More generally,
∫
1
a
x
+
b
d
x
=
{
1
a
ln
|
a
x
+
b
|
+
C
−
a
x
+
b
<
0
1
a
ln
|
a
x
+
b
|
+
C
+
a
x
+
b
>
0
∫
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
+
C
(for
n
≠
−
1
)
(Cavalieri's quadrature formula)
∫
x
a
x
+
b
d
x
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
+
C
∫
x
(
a
x
+
b
)
2
d
x
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
+
C
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
+
C
(for
n
∉
{
1
,
2
}
)
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
+
C
(for
n
∉
{
−
1
,
−
2
}
)
∫
x
2
a
x
+
b
d
x
=
b
2
ln
(
|
a
x
+
b
|
)
a
3
+
a
x
2
−
2
b
x
2
a
2
+
C
∫
x
2
(
a
x
+
b
)
2
d
x
=
1
a
3
(
a
x
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
+
C
∫
x
2
(
a
x
+
b
)
3
d
x
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
+
C
∫
x
2
(
a
x
+
b
)
n
d
x
=
1
a
3
(
−
(
a
x
+
b
)
3
−
n
(
n
−
3
)
+
2
b
(
a
x
+
b
)
2
−
n
(
n
−
2
)
−
b
2
(
a
x
+
b
)
1
−
n
(
n
−
1
)
)
+
C
(for
n
∉
{
1
,
2
,
3
}
)
∫
1
x
(
a
x
+
b
)
d
x
=
−
1
b
ln
|
a
x
+
b
x
|
+
C
∫
1
x
2
(
a
x
+
b
)
d
x
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
+
C
∫
1
x
2
(
a
x
+
b
)
2
d
x
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
+
C
For
a
≠
0
:
∫
1
a
x
2
+
b
x
+
c
d
x
=
{
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
+
C
(for
4
a
c
−
b
2
>
0
)
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
+
C
=
{
−
2
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
+
C
(for
|
2
a
x
+
b
|
<
b
2
−
4
a
c
)
−
2
b
2
−
4
a
c
a
r
c
c
o
t
h
2
a
x
+
b
b
2
−
4
a
c
+
C
(else)
(for
4
a
c
−
b
2
<
0
)
−
2
2
a
x
+
b
+
C
(for
4
a
c
−
b
2
=
0
)
∫
x
a
x
2
+
b
x
+
c
d
x
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
+
C
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
{
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
+
C
(for
4
a
c
−
b
2
>
0
)
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
+
C
(for
4
a
c
−
b
2
<
0
)
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
(
2
a
x
+
b
)
+
C
(for
4
a
c
−
b
2
=
0
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
d
x
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
+
C
∫
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
−
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
+
C
∫
1
x
(
a
x
2
+
b
x
+
c
)
d
x
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
1
a
x
2
+
b
x
+
c
d
x
+
C
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
x
m
+
1
(
a
+
b
x
n
)
p
m
+
n
p
+
1
+
a
n
p
m
+
n
p
+
1
∫
x
m
(
a
+
b
x
n
)
p
−
1
d
x
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
−
x
m
+
1
(
a
+
b
x
n
)
p
+
1
a
n
(
p
+
1
)
+
m
+
n
(
p
+
1
)
+
1
a
n
(
p
+
1
)
∫
x
m
(
a
+
b
x
n
)
p
+
1
d
x
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
x
m
+
1
(
a
+
b
x
n
)
p
m
+
1
−
b
n
p
m
+
1
∫
x
m
+
n
(
a
+
b
x
n
)
p
−
1
d
x
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
x
m
−
n
+
1
(
a
+
b
x
n
)
p
+
1
b
n
(
p
+
1
)
−
m
−
n
+
1
b
n
(
p
+
1
)
∫
x
m
−
n
(
a
+
b
x
n
)
p
+
1
d
x
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
x
m
−
n
+
1
(
a
+
b
x
n
)
p
+
1
b
(
m
+
n
p
+
1
)
−
a
(
m
−
n
+
1
)
b
(
m
+
n
p
+
1
)
∫
x
m
−
n
(
a
+
b
x
n
)
p
d
x
∫
x
m
(
a
+
b
x
n
)
p
d
x
=
x
m
+
1
(
a
+
b
x
n
)
p
+
1
a
(
m
+
1
)
−
b
(
m
+
n
(
p
+
1
)
+
1
)
a
(
m
+
1
)
∫
x
m
+
n
(
a
+
b
x
n
)
p
d
x
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
)
m
(
c
+
d
x
)
n
(
e
+
f
x
)
p
by setting B to 0.
∫
(
A
+
B
x
)
(
a
+
b
x
)
m
(
c
+
d
x
)
n
(
e
+
f
x
)
p
d
x
=
−
(
A
b
−
a
B
)
(
a
+
b
x
)
m
+
1
(
c
+
d
x
)
n
(
e
+
f
x
)
p
+
1
b
(
m
+
1
)
(
a
f
−
b
e
)
+
1
b
(
m
+
1
)
(
a
f
−
b
e
)
⋅
∫
(
A
+
B
x
)
(
a
+
b
x
)
m
(
c
+
d
x
)
n
(
e
+
f
x
)
p
d
x
=
B
(
a
+
b
x
)
m
(
c
+
d
x
)
n
+
1
(
e
+
f
x
)
p
+
1
d
f
(
m
+
n
+
p
+
2
)
+
1
d
f
(
m
+
n
+
p
+
2
)
⋅
∫
(
A
+
B
x
)
(
a
+
b
x
)
m
(
c
+
d
x
)
n
(
e
+
f
x
)
p
d
x
=
(
A
b
−
a
B
)
(
a
+
b
x
)
m
+
1
(
c
+
d
x
)
n
+
1
(
e
+
f
x
)
p
+
1
(
m
+
1
)
(
a
d
−
b
c
)
(
a
f
−
b
e
)
+
1
(
m
+
1
)
(
a
d
−
b
c
)
(
a
f
−
b
e
)
⋅
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, p and q toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
and
x
m
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
by setting m and/or B to 0.
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
−
(
A
b
−
a
B
)
x
m
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
a
b
n
(
p
+
1
)
+
1
a
b
n
(
p
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
B
x
m
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
b
(
m
+
n
(
p
+
q
+
1
)
+
1
)
+
1
b
(
m
+
n
(
p
+
q
+
1
)
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
−
(
A
b
−
a
B
)
x
m
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
+
1
a
n
(
b
c
−
a
d
)
(
p
+
1
)
+
1
a
n
(
b
c
−
a
d
)
(
p
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
B
x
m
−
n
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
+
1
b
d
(
m
+
n
(
p
+
q
+
1
)
+
1
)
−
1
b
d
(
m
+
n
(
p
+
q
+
1
)
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
A
x
m
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
+
1
a
c
(
m
+
1
)
+
1
a
c
(
m
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
A
x
m
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
a
(
m
+
1
)
−
1
a
(
m
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
)
p
(
c
+
d
x
n
)
q
d
x
=
(
A
b
−
a
B
)
x
m
−
n
+
1
(
a
+
b
x
n
)
p
+
1
(
c
+
d
x
n
)
q
+
1
b
n
(
b
c
−
a
d
)
(
p
+
1
)
−
1
b
n
(
b
c
−
a
d
)
(
p
+
1
)
⋅
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
+
c
x
2
)
p
when
b
2
−
4
a
c
=
0
by setting m to 0.
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
e
(
m
+
1
)
−
p
(
d
+
e
x
)
m
+
2
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
−
1
e
2
(
m
+
1
)
(
m
+
2
p
+
1
)
+
p
(
2
p
−
1
)
(
2
c
d
−
b
e
)
e
2
(
m
+
1
)
(
m
+
2
p
+
1
)
∫
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
−
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
e
(
m
+
1
)
−
p
(
d
+
e
x
)
m
+
2
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
−
1
e
2
(
m
+
1
)
(
m
+
2
)
+
2
c
p
(
2
p
−
1
)
e
2
(
m
+
1
)
(
m
+
2
)
∫
(
d
+
e
x
)
m
+
2
(
a
+
b
x
+
c
x
2
)
p
−
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
−
e
(
m
+
2
p
+
2
)
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
+
1
(
p
+
1
)
(
2
p
+
1
)
(
2
c
d
−
b
e
)
+
(
d
+
e
x
)
m
+
1
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
(
2
p
+
1
)
(
2
c
d
−
b
e
)
+
e
2
m
(
m
+
2
p
+
2
)
(
p
+
1
)
(
2
p
+
1
)
(
2
c
d
−
b
e
)
∫
(
d
+
e
x
)
m
−
1
(
a
+
b
x
+
c
x
2
)
p
+
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
−
e
m
(
d
+
e
x
)
m
−
1
(
a
+
b
x
+
c
x
2
)
p
+
1
2
c
(
p
+
1
)
(
2
p
+
1
)
+
(
d
+
e
x
)
m
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
2
c
(
2
p
+
1
)
+
e
2
m
(
m
−
1
)
2
c
(
p
+
1
)
(
2
p
+
1
)
∫
(
d
+
e
x
)
m
−
2
(
a
+
b
x
+
c
x
2
)
p
+
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
e
(
m
+
2
p
+
1
)
−
p
(
2
c
d
−
b
e
)
(
d
+
e
x
)
m
+
1
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
−
1
2
c
e
2
(
m
+
2
p
)
(
m
+
2
p
+
1
)
+
p
(
2
p
−
1
)
(
2
c
d
−
b
e
)
2
2
c
e
2
(
m
+
2
p
)
(
m
+
2
p
+
1
)
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
−
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
−
2
c
e
(
m
+
2
p
+
2
)
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
+
1
(
p
+
1
)
(
2
p
+
1
)
(
2
c
d
−
b
e
)
2
+
(
d
+
e
x
)
m
+
1
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
(
2
p
+
1
)
(
2
c
d
−
b
e
)
+
2
c
e
2
(
m
+
2
p
+
2
)
(
m
+
2
p
+
3
)
(
p
+
1
)
(
2
p
+
1
)
(
2
c
d
−
b
e
)
2
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
+
1
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
2
c
(
m
+
2
p
+
1
)
+
m
(
2
c
d
−
b
e
)
2
c
(
m
+
2
p
+
1
)
∫
(
d
+
e
x
)
m
−
1
(
a
+
b
x
+
c
x
2
)
p
d
x
∫
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
d
x
=
−
(
d
+
e
x
)
m
+
1
(
b
+
2
c
x
)
(
a
+
b
x
+
c
x
2
)
p
(
m
+
1
)
(
2
c
d
−
b
e
)
+
2
c
(
m
+
2
p
+
2
)
(
m
+
1
)
(
2
c
d
−
b
e
)
∫
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
d
x
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
+
c
x
2
)
p
and
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
by setting m and/or B to 0.
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
A
e
(
m
+
2
p
+
2
)
−
B
d
(
2
p
+
1
)
+
e
B
(
m
+
1
)
x
)
(
a
+
b
x
+
c
x
2
)
p
e
2
(
m
+
1
)
(
m
+
2
p
+
2
)
+
1
e
2
(
m
+
1
)
(
m
+
2
p
+
2
)
p
⋅
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
(
A
b
−
2
a
B
−
(
b
B
−
2
A
c
)
x
)
(
a
+
b
x
+
c
x
2
)
p
+
1
(
p
+
1
)
(
b
2
−
4
a
c
)
+
1
(
p
+
1
)
(
b
2
−
4
a
c
)
⋅
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
A
c
e
(
m
+
2
p
+
2
)
−
B
(
c
d
+
2
c
d
p
−
b
e
p
)
+
B
c
e
(
m
+
2
p
+
1
)
x
)
(
a
+
b
x
+
c
x
2
)
p
c
e
2
(
m
+
2
p
+
1
)
(
m
+
2
p
+
2
)
−
p
c
e
2
(
m
+
2
p
+
1
)
(
m
+
2
p
+
2
)
⋅
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
(
d
+
e
x
)
m
+
1
(
A
(
b
c
d
−
b
2
e
+
2
a
c
e
)
−
a
B
(
2
c
d
−
b
e
)
+
c
(
A
(
2
c
d
−
b
e
)
−
B
(
b
d
−
2
a
e
)
)
x
)
(
a
+
b
x
+
c
x
2
)
p
+
1
(
p
+
1
)
(
b
2
−
4
a
c
)
(
c
d
2
−
b
d
e
+
a
e
2
)
+
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
B
(
d
+
e
x
)
m
(
a
+
b
x
+
c
x
2
)
p
+
1
c
(
m
+
2
p
+
2
)
+
1
c
(
m
+
2
p
+
2
)
⋅
∫
(
d
+
e
x
)
m
(
A
+
B
x
)
(
a
+
b
x
+
c
x
2
)
p
d
x
=
−
(
B
d
−
A
e
)
(
d
+
e
x
)
m
+
1
(
a
+
b
x
+
c
x
2
)
p
+
1
(
m
+
1
)
(
c
d
2
−
b
d
e
+
a
e
2
)
+
1
(
m
+
1
)
(
c
d
2
−
b
d
e
+
a
e
2
)
⋅
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
n
+
c
x
2
n
)
p
when
b
2
−
4
a
c
=
0
by setting m to 0.
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
m
+
2
n
p
+
1
+
n
p
x
m
+
1
(
2
a
+
b
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
(
m
+
1
)
(
m
+
2
n
p
+
1
)
−
b
n
2
p
(
2
p
−
1
)
(
m
+
1
)
(
m
+
2
n
p
+
1
)
∫
x
m
+
n
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
(
m
+
n
(
2
p
−
1
)
+
1
)
x
m
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
(
m
+
1
)
(
m
+
n
+
1
)
+
n
p
x
m
+
1
(
2
a
+
b
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
(
m
+
1
)
(
m
+
n
+
1
)
+
2
c
p
n
2
(
2
p
−
1
)
(
m
+
1
)
(
m
+
n
+
1
)
∫
x
m
+
2
n
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
(
m
+
n
(
2
p
+
1
)
+
1
)
x
m
−
n
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
b
n
2
(
p
+
1
)
(
2
p
+
1
)
−
x
m
+
1
(
b
+
2
c
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
b
n
(
2
p
+
1
)
−
(
m
−
n
+
1
)
(
m
+
n
(
2
p
+
1
)
+
1
)
b
n
2
(
p
+
1
)
(
2
p
+
1
)
∫
x
m
−
n
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
−
(
m
−
3
n
−
2
n
p
+
1
)
x
m
−
2
n
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
2
c
n
2
(
p
+
1
)
(
2
p
+
1
)
−
x
m
−
2
n
+
1
(
2
a
+
b
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
2
c
n
(
2
p
+
1
)
+
(
m
−
n
+
1
)
(
m
−
2
n
+
1
)
2
c
n
2
(
p
+
1
)
(
2
p
+
1
)
∫
x
m
−
2
n
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
m
+
2
n
p
+
1
+
n
p
x
m
+
1
(
2
a
+
b
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
(
m
+
2
n
p
+
1
)
(
m
+
n
(
2
p
−
1
)
+
1
)
+
2
a
n
2
p
(
2
p
−
1
)
(
m
+
2
n
p
+
1
)
(
m
+
n
(
2
p
−
1
)
+
1
)
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
−
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
−
(
m
+
n
+
2
n
p
+
1
)
x
m
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
2
a
n
2
(
p
+
1
)
(
2
p
+
1
)
−
x
m
+
1
(
2
a
+
b
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
2
a
n
(
2
p
+
1
)
+
(
m
+
n
(
2
p
+
1
)
+
1
)
(
m
+
2
n
(
p
+
1
)
+
1
)
2
a
n
2
(
p
+
1
)
(
2
p
+
1
)
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
−
n
+
1
(
b
+
2
c
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
2
c
(
m
+
2
n
p
+
1
)
−
b
(
m
−
n
+
1
)
2
c
(
m
+
2
n
p
+
1
)
∫
x
m
−
n
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
∫
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
+
1
(
b
+
2
c
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
b
(
m
+
1
)
−
2
c
(
m
+
n
(
2
p
+
1
)
+
1
)
b
(
m
+
1
)
∫
x
m
+
n
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
These reduction formulas can be used for integrands having integer and/or fractional exponents.
Special cases of these reductions formulas can be used for integrands of the form
(
a
+
b
x
n
+
c
x
2
n
)
p
and
x
m
(
a
+
b
x
n
+
c
x
2
n
)
p
by setting m and/or B to 0.
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
+
1
(
A
(
m
+
n
(
2
p
+
1
)
+
1
)
+
B
(
m
+
1
)
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
(
m
+
1
)
(
m
+
n
(
2
p
+
1
)
+
1
)
+
n
p
(
m
+
1
)
(
m
+
n
(
2
p
+
1
)
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
−
n
+
1
(
A
b
−
2
a
B
−
(
b
B
−
2
A
c
)
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
n
(
p
+
1
)
(
b
2
−
4
a
c
)
+
1
n
(
p
+
1
)
(
b
2
−
4
a
c
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
x
m
+
1
(
b
B
n
p
+
A
c
(
m
+
n
(
2
p
+
1
)
+
1
)
+
B
c
(
m
+
2
n
p
+
1
)
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
c
(
m
+
2
n
p
+
1
)
(
m
+
n
(
2
p
+
1
)
+
1
)
+
n
p
c
(
m
+
2
n
p
+
1
)
(
m
+
n
(
2
p
+
1
)
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
−
x
m
+
1
(
A
b
2
−
a
b
B
−
2
a
A
c
+
(
A
b
−
2
a
B
)
c
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
a
n
(
p
+
1
)
(
b
2
−
4
a
c
)
+
1
a
n
(
p
+
1
)
(
b
2
−
4
a
c
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
B
x
m
−
n
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
c
(
m
+
n
(
2
p
+
1
)
+
1
)
−
1
c
(
m
+
n
(
2
p
+
1
)
+
1
)
⋅
∫
x
m
(
A
+
B
x
n
)
(
a
+
b
x
n
+
c
x
2
n
)
p
d
x
=
A
x
m
+
1
(
a
+
b
x
n
+
c
x
2
n
)
p
+
1
a
(
m
+
1
)
+
1
a
(
m
+
1
)
⋅