Rahul Sharma (Editor)

List of integrals of inverse trigonometric functions

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
List of integrals of inverse trigonometric functions

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals.

Contents

  • The inverse trigonometric functions are also known as the "arc functions".
  • C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.
  • There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin−1, asin, or, as is used on this page, arcsin.
  • For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
  • Arcsine function integration formulas

    arcsin ( x ) d x = x arcsin ( x ) + 1 x 2 + C arcsin ( a x ) d x = x arcsin ( a x ) + 1 a 2 x 2 a + C x arcsin ( a x ) d x = x 2 arcsin ( a x ) 2 arcsin ( a x ) 4 a 2 + x 1 a 2 x 2 4 a + C x 2 arcsin ( a x ) d x = x 3 arcsin ( a x ) 3 + ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C x m arcsin ( a x ) d x = x m + 1 arcsin ( a x ) m + 1 a m + 1 x m + 1 1 a 2 x 2 d x ( m 1 ) arcsin ( a x ) 2 d x = 2 x + x arcsin ( a x ) 2 + 2 1 a 2 x 2 arcsin ( a x ) a + C arcsin ( a x ) n d x = x arcsin ( a x ) n + n 1 a 2 x 2 arcsin ( a x ) n 1 a n ( n 1 ) arcsin ( a x ) n 2 d x arcsin ( a x ) n d x = x arcsin ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + 1 a 2 x 2 arcsin ( a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) arcsin ( a x ) n + 2 d x ( n 1 , 2 )

    Arccosine function integration formulas

    arccos ( x ) d x = x arccos ( x ) 1 x 2 + C arccos ( a x ) d x = x arccos ( a x ) 1 a 2 x 2 a + C x arccos ( a x ) d x = x 2 arccos ( a x ) 2 arccos ( a x ) 4 a 2 x 1 a 2 x 2 4 a + C x 2 arccos ( a x ) d x = x 3 arccos ( a x ) 3 ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C x m arccos ( a x ) d x = x m + 1 arccos ( a x ) m + 1 + a m + 1 x m + 1 1 a 2 x 2 d x ( m 1 ) arccos ( a x ) 2 d x = 2 x + x arccos ( a x ) 2 2 1 a 2 x 2 arccos ( a x ) a + C arccos ( a x ) n d x = x arccos ( a x ) n n 1 a 2 x 2 arccos ( a x ) n 1 a n ( n 1 ) arccos ( a x ) n 2 d x arccos ( a x ) n d x = x arccos ( a x ) n + 2 ( n + 1 ) ( n + 2 ) 1 a 2 x 2 arccos ( a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) arccos ( a x ) n + 2 d x ( n 1 , 2 )

    Arctangent function integration formulas

    arctan ( x ) d x = x arctan ( x ) ln ( x 2 + 1 ) 2 + C arctan ( a x ) d x = x arctan ( a x ) ln ( a 2 x 2 + 1 ) 2 a + C x arctan ( a x ) d x = x 2 arctan ( a x ) 2 + arctan ( a x ) 2 a 2 x 2 a + C x 2 arctan ( a x ) d x = x 3 arctan ( a x ) 3 + ln ( a 2 x 2 + 1 ) 6 a 3 x 2 6 a + C x m arctan ( a x ) d x = x m + 1 arctan ( a x ) m + 1 a m + 1 x m + 1 a 2 x 2 + 1 d x ( m 1 )

    Arccotangent function integration formulas

    arccot ( x ) d x = x arccot ( x ) + ln ( x 2 + 1 ) 2 + C arccot ( a x ) d x = x arccot ( a x ) + ln ( a 2 x 2 + 1 ) 2 a + C x arccot ( a x ) d x = x 2 arccot ( a x ) 2 + arccot ( a x ) 2 a 2 + x 2 a + C x 2 arccot ( a x ) d x = x 3 arccot ( a x ) 3 ln ( a 2 x 2 + 1 ) 6 a 3 + x 2 6 a + C x m arccot ( a x ) d x = x m + 1 arccot ( a x ) m + 1 + a m + 1 x m + 1 a 2 x 2 + 1 d x ( m 1 )

    Arcsecant function integration formulas

    arcsec ( x ) d x = x arcsec ( x ) arcosh | x | + C arcsec ( a x ) d x = x arcsec ( a x ) 1 a arcosh | a x | + C x arcsec ( a x ) d x = x 2 arcsec ( a x ) 2 x 2 a 1 1 a 2 x 2 + C x 2 arcsec ( a x ) d x = x 3 arcsec ( a x ) 3 arcosh | a x | 6 a 3 x 2 6 a 1 1 a 2 x 2 + C x m arcsec ( a x ) d x = x m + 1 arcsec ( a x ) m + 1 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x ( m 1 )

    Arccosecant function integration formulas

    arccsc ( x ) d x = x arccsc ( x ) + ln | x + x 2 1 | + C = x arccsc ( x ) + arcosh ( x ) + C arccsc ( a x ) d x = x arccsc ( a x ) + 1 a artanh 1 1 a 2 x 2 + C x arccsc ( a x ) d x = x 2 arccsc ( a x ) 2 + x 2 a 1 1 a 2 x 2 + C x 2 arccsc ( a x ) d x = x 3 arccsc ( a x ) 3 + 1 6 a 3 artanh 1 1 a 2 x 2 + x 2 6 a 1 1 a 2 x 2 + C x m arccsc ( a x ) d x = x m + 1 arccsc ( a x ) m + 1 + 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x ( m 1 )

    References

    List of integrals of inverse trigonometric functions Wikipedia


    Similar Topics