Suvarna Garge (Editor)

List of integrals of hyperbolic functions

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.

Contents

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrals involving only hyperbolic sine functions

sinh a x d x = 1 a cosh a x + C

sinh 2 a x d x = 1 4 a sinh 2 a x x 2 + C

sinh n a x d x = 1 a n sinh n 1 a x cosh a x n 1 n sinh n 2 a x d x (for  n > 0 )

also: sinh n a x d x = 1 a ( n + 1 ) sinh n + 1 a x cosh a x n + 2 n + 1 sinh n + 2 a x d x (for  n < 0 n 1 )


d x sinh a x = 1 a ln | tanh a x 2 | + C

also: d x sinh a x = 1 a ln | cosh a x 1 sinh a x | + C d x sinh a x = 1 a ln | sinh a x cosh a x + 1 | + C d x sinh a x = 1 2 a ln | cosh a x 1 cosh a x + 1 | + C


d x sinh n a x = cosh a x a ( n 1 ) sinh n 1 a x n 2 n 1 d x sinh n 2 a x (for  n 1 )

x sinh a x d x = 1 a x cosh a x 1 a 2 sinh a x + C

sinh a x sinh b x d x = 1 a 2 b 2 ( a sinh b x cosh a x b cosh b x sinh a x ) + C (for  a 2 b 2 )

Integrals involving only hyperbolic cosine functions

cosh a x d x = 1 a sinh a x + C

cosh 2 a x d x = 1 4 a sinh 2 a x + x 2 + C

cosh n a x d x = 1 a n sinh a x cosh n 1 a x + n 1 n cosh n 2 a x d x (for  n > 0 )

also: cosh n a x d x = 1 a ( n + 1 ) sinh a x cosh n + 1 a x + n + 2 n + 1 cosh n + 2 a x d x (for  n < 0 n 1 )


d x cosh a x = 2 a arctan e a x + C

also: d x cosh a x = 1 a arctan ( sinh a x ) + C


d x cosh n a x = sinh a x a ( n 1 ) cosh n 1 a x + n 2 n 1 d x cosh n 2 a x (for  n 1 )

x cosh a x d x = 1 a x sinh a x 1 a 2 cosh a x + C

x 2 cosh a x d x = 2 x cosh a x a 2 + ( x 2 a + 2 a 3 ) sinh a x + C

cosh a x cosh b x d x = 1 a 2 b 2 ( a sinh a x cosh b x b sinh b x cosh a x ) + C (for  a 2 b 2 )

Integrals of hyperbolic tangent, cotangent, secant, cosecant functions

tanh x d x = ln cosh x + C

tanh 2 a x d x = x tanh a x a + C

tanh n a x d x = 1 a ( n 1 ) tanh n 1 a x + tanh n 2 a x d x (for  n 1 )

coth x d x = ln | sinh x | + C ,  for  x 0

coth n a x d x = 1 a ( n 1 ) coth n 1 a x + coth n 2 a x d x (for  n 1 )

sech x d x = arctan ( sinh x ) + C

csch x d x = ln | tanh x 2 | + C ,  for  x 0

Integrals involving hyperbolic sine and cosine functions

cosh a x sinh b x d x = 1 a 2 b 2 ( a sinh a x sinh b x b cosh a x cosh b x ) + C (for  a 2 b 2 )

cosh n a x sinh m a x d x = cosh n 1 a x a ( n m ) sinh m 1 a x + n 1 n m cosh n 2 a x sinh m a x d x (for  m n )

also: cosh n a x sinh m a x d x = cosh n + 1 a x a ( m 1 ) sinh m 1 a x + n m + 2 m 1 cosh n a x sinh m 2 a x d x (for  m 1 ) cosh n a x sinh m a x d x = cosh n 1 a x a ( m 1 ) sinh m 1 a x + n 1 m 1 cosh n 2 a x sinh m 2 a x d x (for  m 1 ) sinh m a x cosh n a x d x = sinh m 1 a x a ( m n ) cosh n 1 a x + m 1 n m sinh m 2 a x cosh n a x d x (for  m n ) sinh m a x cosh n a x d x = sinh m + 1 a x a ( n 1 ) cosh n 1 a x + m n + 2 n 1 sinh m a x cosh n 2 a x d x (for  n 1 ) sinh m a x cosh n a x d x = sinh m 1 a x a ( n 1 ) cosh n 1 a x + m 1 n 1 sinh m 2 a x cosh n 2 a x d x (for  n 1 )

Integrals involving hyperbolic and trigonometric functions

sinh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) c a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + C

sinh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) + C

cosh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) c a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + C

cosh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) + C

  • derivatives of hyperbolic functions(http://math.info/Calculus/Derivatives_Hyp_InvHyp/)
  • References

    List of integrals of hyperbolic functions Wikipedia


    Similar Topics