The following is a list of integrals of exponential functions. For a complete list of integral functions, please see the list of integrals.
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
∫
x
e
c
x
d
x
=
e
c
x
(
c
x
−
1
c
2
)
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
=
(
∂
∂
c
)
n
e
c
x
c
=
e
c
x
∑
i
=
0
n
(
−
1
)
i
n
!
(
n
−
i
)
!
c
i
+
1
x
n
−
i
=
e
c
x
∑
i
=
0
n
(
−
1
)
n
−
i
n
!
i
!
c
n
−
i
+
1
x
i
∫
e
c
x
x
d
x
=
ln
|
x
|
+
∑
n
=
1
∞
(
c
x
)
n
n
⋅
n
!
∫
e
c
x
x
n
d
x
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(for
n
≠
1
)
∫
f
′
(
x
)
e
f
(
x
)
d
x
=
e
f
(
x
)
∫
e
c
x
d
x
=
1
c
e
c
x
∫
a
c
x
d
x
=
1
c
⋅
ln
a
a
c
x
f
o
r
a
>
0
,
a
≠
1
Integrals involving exponential and trigonometric functions
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
=
e
c
x
c
2
+
b
2
sin
(
b
x
−
ϕ
)
cos
(
ϕ
)
=
c
c
2
+
b
2
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
=
e
c
x
c
2
+
b
2
cos
(
b
x
−
ϕ
)
cos
(
ϕ
)
=
c
c
2
+
b
2
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
∫
e
c
x
ln
x
d
x
=
1
c
(
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
)
(
Ei is the exponential integral)
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
∫
e
−
c
x
2
d
x
=
π
4
c
erf
(
c
x
)
(
erf is the error function)
∫
x
e
−
c
x
2
d
x
=
−
1
2
c
e
−
c
x
2
∫
e
−
x
2
x
2
d
x
=
−
e
−
x
2
x
−
π
e
r
f
(
x
)
∫
1
σ
2
π
e
−
1
2
(
x
−
μ
σ
)
2
d
x
=
1
2
(
erf
x
−
μ
σ
2
)
∫
e
x
2
d
x
=
e
x
2
(
∑
j
=
0
n
−
1
c
2
j
1
x
2
j
+
1
)
+
(
2
n
−
1
)
c
2
n
−
2
∫
e
x
2
x
2
n
d
x
valid for any
n
>
0
,
where
c
2
j
=
1
⋅
3
⋅
5
⋯
(
2
j
−
1
)
2
j
+
1
=
(
2
j
)
!
j
!
2
2
j
+
1
.
(Note that the value of the expression is
independent of the value of
n, which is why it does not appear in the integral.)
∫
x
x
⋅
⋅
x
⏟
m
d
x
=
∑
n
=
0
m
(
−
1
)
n
(
n
+
1
)
n
−
1
n
!
Γ
(
n
+
1
,
−
ln
x
)
+
∑
n
=
m
+
1
∞
(
−
1
)
n
a
m
n
Γ
(
n
+
1
,
−
ln
x
)
(for
x
>
0
)
where
a
m
n
=
{
1
if
n
=
0
,
1
n
!
if
m
=
1
,
1
n
∑
j
=
1
n
j
a
m
,
n
−
j
a
m
−
1
,
j
−
1
otherwise
and
Γ(x,y) is the gamma function
∫
1
a
e
λ
x
+
b
d
x
=
x
b
−
1
b
λ
ln
(
a
e
λ
x
+
b
)
when
b
≠
0
,
λ
≠
0
, and
a
e
λ
x
+
b
>
0
.
∫
e
2
λ
x
a
e
λ
x
+
b
d
x
=
1
a
2
λ
[
a
e
λ
x
+
b
−
b
ln
(
a
e
λ
x
+
b
)
]
when
a
≠
0
,
λ
≠
0
, and
a
e
λ
x
+
b
>
0
.
∫
0
1
e
x
⋅
ln
a
+
(
1
−
x
)
⋅
ln
b
d
x
=
∫
0
1
(
a
b
)
x
⋅
b
d
x
=
∫
0
1
a
x
⋅
b
1
−
x
d
x
=
a
−
b
ln
a
−
ln
b
for
a
>
0
,
b
>
0
,
a
≠
b
, which is the logarithmic mean
∫
0
∞
e
−
a
x
d
x
=
1
a
(
Re
(
a
)
>
0
)
∫
0
∞
e
−
a
x
2
d
x
=
1
2
π
a
(
a
>
0
)
(the Gaussian integral)
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
(
a
>
0
)
∫
−
∞
∞
e
−
a
x
2
e
−
2
b
x
d
x
=
π
a
e
b
2
a
(
a
>
0
)
(see Integral of a Gaussian function)
∫
−
∞
∞
x
e
−
a
(
x
−
b
)
2
d
x
=
b
π
a
(
Re
(
a
)
>
0
)
∫
−
∞
∞
x
e
−
a
x
2
+
b
x
d
x
=
π
b
2
a
3
/
2
e
b
2
4
a
(
Re
(
a
)
>
0
)
∫
−
∞
∞
x
2
e
−
a
x
2
d
x
=
1
2
π
a
3
(
a
>
0
)
∫
−
∞
∞
x
2
e
−
a
x
2
−
b
x
d
x
=
π
(
2
a
+
b
2
)
4
a
5
/
2
e
b
2
4
a
(
Re
(
a
)
>
0
)
∫
−
∞
∞
x
3
e
−
a
x
2
+
b
x
d
x
=
π
(
6
a
+
b
2
)
b
8
a
7
/
2
e
b
2
4
a
(
Re
(
a
)
>
0
)
∫
0
∞
x
n
e
−
a
x
2
d
x
=
{
Γ
(
n
+
1
2
)
2
a
n
+
1
2
(
n
>
−
1
,
a
>
0
)
(
2
k
−
1
)
!
!
2
k
+
1
a
k
π
a
(
n
=
2
k
,
k
integer
,
a
>
0
)
k
!
2
a
k
+
1
(
n
=
2
k
+
1
,
k
integer
,
a
>
0
)
(
!! is the double factorial)
∫
0
∞
x
n
e
−
a
x
d
x
=
{
Γ
(
n
+
1
)
a
n
+
1
(
n
>
−
1
,
a
>
0
)
n
!
a
n
+
1
(
n
=
0
,
1
,
2
,
…
,
a
>
0
)
∫
0
1
x
n
e
−
a
x
d
x
=
n
!
a
n
+
1
[
1
−
e
−
a
∑
i
=
0
n
a
i
i
!
]
∫
0
∞
e
−
a
x
b
d
x
=
1
b
a
−
1
b
Γ
(
1
b
)
∫
0
∞
x
n
e
−
a
x
b
d
x
=
1
b
a
−
n
+
1
b
Γ
(
n
+
1
b
)
∫
0
∞
e
−
a
x
sin
b
x
d
x
=
b
a
2
+
b
2
(
a
>
0
)
∫
0
∞
e
−
a
x
cos
b
x
d
x
=
a
a
2
+
b
2
(
a
>
0
)
∫
0
∞
x
e
−
a
x
sin
b
x
d
x
=
2
a
b
(
a
2
+
b
2
)
2
(
a
>
0
)
∫
0
∞
x
e
−
a
x
cos
b
x
d
x
=
a
2
−
b
2
(
a
2
+
b
2
)
2
(
a
>
0
)
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
(
I0 is the modified Bessel function of the first kind)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
(
x
2
+
y
2
)