In mathematics, the Lerch zeta-function, sometimes called the Hurwitz–Lerch zeta-function, is a special function that generalizes the Hurwitz zeta-function and the polylogarithm. It is named after the Czech mathematician Mathias Lerch [1].
The Lerch zeta-function is given by
  
    
      
        L
        (
        λ
        ,
        α
        ,
        s
        )
        =
        
          ∑
          
            n
            =
            0
          
          
            ∞
          
        
        
          
            
              exp
              
              (
              2
              π
              i
              λ
              n
              )
            
            
              (
              n
              +
              α
              
                )
                
                  s
                
              
            
          
        
        .
      
    
    
  
A related function, the Lerch transcendent, is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        α
        )
        =
        
          ∑
          
            n
            =
            0
          
          
            ∞
          
        
        
          
            
              z
              
                n
              
            
            
              (
              n
              +
              α
              
                )
                
                  s
                
              
            
          
        
        .
      
    
    
  
The two are related, as
  
    
      
        
        Φ
        (
        exp
        
        (
        2
        π
        i
        λ
        )
        ,
        s
        ,
        α
        )
        =
        L
        (
        λ
        ,
        α
        ,
        s
        )
        .
      
    
    
  
An integral representation is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          
            1
            
              Γ
              (
              s
              )
            
          
        
        
          ∫
          
            0
          
          
            ∞
          
        
        
          
            
              
                t
                
                  s
                  −
                  1
                
              
              
                e
                
                  −
                  a
                  t
                
              
            
            
              1
              −
              z
              
                e
                
                  −
                  t
                
              
            
          
        
        
        d
        t
      
    
    
  
for
  
    
      
        ℜ
        (
        a
        )
        >
        0
        ∧
        ℜ
        (
        s
        )
        >
        0
        ∧
        z
        <
        1
        ∨
        ℜ
        (
        a
        )
        >
        0
        ∧
        ℜ
        (
        s
        )
        >
        1
        ∧
        z
        =
        1.
      
    
    
  
A contour integral representation is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        −
        
          
            
              Γ
              (
              1
              −
              s
              )
            
            
              2
              π
              i
            
          
        
        
          ∫
          
            0
          
          
            (
            +
            ∞
            )
          
        
        
          
            
              (
              −
              t
              
                )
                
                  s
                  −
                  1
                
              
              
                e
                
                  −
                  a
                  t
                
              
            
            
              1
              −
              z
              
                e
                
                  −
                  t
                
              
            
          
        
        
        d
        t
      
    
    
  
for
  
    
      
        ℜ
        (
        a
        )
        >
        0
        ∧
        ℜ
        (
        s
        )
        <
        0
        ∧
        z
        <
        1
      
    
    
  
where the contour must not enclose any of the points 
  
    
      
        t
        =
        log
        
        (
        z
        )
        +
        2
        k
        π
        i
        ,
        k
        ∈
        Z
        .
      
    
    
  
A Hermite-like integral representation is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          
            1
            
              2
              
                a
                
                  s
                
              
            
          
        
        +
        
          ∫
          
            0
          
          
            ∞
          
        
        
          
            
              z
              
                t
              
            
            
              (
              a
              +
              t
              
                )
                
                  s
                
              
            
          
        
        
        d
        t
        +
        
          
            2
            
              a
              
                s
                −
                1
              
            
          
        
        
          ∫
          
            0
          
          
            ∞
          
        
        
          
            
              sin
              
              (
              s
              arctan
              
              (
              t
              )
              −
              t
              a
              log
              
              (
              z
              )
              )
            
            
              (
              1
              +
              
                t
                
                  2
                
              
              
                )
                
                  s
                  
                    /
                  
                  2
                
              
              (
              
                e
                
                  2
                  π
                  a
                  t
                
              
              −
              1
              )
            
          
        
        
        d
        t
      
    
    
  
for
  
    
      
        ℜ
        (
        a
        )
        >
        0
        ∧
        
          |
        
        z
        
          |
        
        <
        1
      
    
    
  
and
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          
            1
            
              2
              
                a
                
                  s
                
              
            
          
        
        +
        
          
            
              
                log
                
                  s
                  −
                  1
                
              
              
              (
              1
              
                /
              
              z
              )
            
            
              z
              
                a
              
            
          
        
        Γ
        (
        1
        −
        s
        ,
        a
        log
        
        (
        1
        
          /
        
        z
        )
        )
        +
        
          
            2
            
              a
              
                s
                −
                1
              
            
          
        
        
          ∫
          
            0
          
          
            ∞
          
        
        
          
            
              sin
              
              (
              s
              arctan
              
              (
              t
              )
              −
              t
              a
              log
              
              (
              z
              )
              )
            
            
              (
              1
              +
              
                t
                
                  2
                
              
              
                )
                
                  s
                  
                    /
                  
                  2
                
              
              (
              
                e
                
                  2
                  π
                  a
                  t
                
              
              −
              1
              )
            
          
        
        
        d
        t
      
    
    
  
for
  
    
      
        ℜ
        (
        a
        )
        >
        0.
      
    
    
  
The Hurwitz zeta-function is a special case, given by
  
    
      
        
        ζ
        (
        s
        ,
        α
        )
        =
        L
        (
        0
        ,
        α
        ,
        s
        )
        =
        Φ
        (
        1
        ,
        s
        ,
        α
        )
        .
      
    
    
  
The polylogarithm is a special case of the Lerch Zeta, given by
  
    
      
        
        
          
            
              Li
            
          
          
            s
          
        
        (
        z
        )
        =
        z
        Φ
        (
        z
        ,
        s
        ,
        1
        )
        .
      
    
    
  
The Legendre chi function is a special case, given by
  
    
      
        
        
          χ
          
            n
          
        
        (
        z
        )
        =
        
          2
          
            −
            n
          
        
        z
        Φ
        (
        
          z
          
            2
          
        
        ,
        n
        ,
        1
        
          /
        
        2
        )
        .
      
    
    
  
The Riemann zeta-function is given by
  
    
      
        
        ζ
        (
        s
        )
        =
        Φ
        (
        1
        ,
        s
        ,
        1
        )
        .
      
    
    
  
The Dirichlet eta-function is given by
  
    
      
        
        η
        (
        s
        )
        =
        Φ
        (
        −
        1
        ,
        s
        ,
        1
        )
        .
      
    
    
  
For λ rational, the summand is a root of unity, and thus 
  
    
      
        L
        (
        λ
        ,
        α
        ,
        s
        )
      
    
    
   may be expressed as a finite sum over the Hurwitz zeta-function.
Various identities include:
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          z
          
            n
          
        
        Φ
        (
        z
        ,
        s
        ,
        a
        +
        n
        )
        +
        
          ∑
          
            k
            =
            0
          
          
            n
            −
            1
          
        
        
          
            
              z
              
                k
              
            
            
              (
              k
              +
              a
              
                )
                
                  s
                
              
            
          
        
      
    
    
  
and
  
    
      
        Φ
        (
        z
        ,
        s
        −
        1
        ,
        a
        )
        =
        
          (
          a
          +
          z
          
            
              ∂
              
                ∂
                z
              
            
          
          )
        
        Φ
        (
        z
        ,
        s
        ,
        a
        )
      
    
    
  
and
  
    
      
        Φ
        (
        z
        ,
        s
        +
        1
        ,
        a
        )
        =
        −
        
        
          
            1
            s
          
        
        
          
            ∂
            
              ∂
              a
            
          
        
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        .
      
    
    
  
A series representation for the Lerch transcendent is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        q
        )
        =
        
          
            1
            
              1
              −
              z
            
          
        
        
          ∑
          
            n
            =
            0
          
          
            ∞
          
        
        
          
            (
            
              
                
                  −
                  z
                
                
                  1
                  −
                  z
                
              
            
            )
          
          
            n
          
        
        
          ∑
          
            k
            =
            0
          
          
            n
          
        
        (
        −
        1
        
          )
          
            k
          
        
        
          
            
              (
            
            
              n
              k
            
            
              )
            
          
        
        (
        q
        +
        k
        
          )
          
            −
            s
          
        
        .
      
    
    
  
(Note that 
  
    
      
        
          
            
              
                (
              
              
                n
                k
              
              
                )
              
            
          
        
      
    
    
   is a binomial coefficient.)
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.
A Taylor's series in the first parameter was given by Erdélyi. It may be written as the following series, which is valid for
  
    
      
        
          |
        
        log
        
        (
        z
        )
        
          |
        
        <
        2
        π
        ;
        s
        ≠
        1
        ,
        2
        ,
        3
        ,
        …
        ;
        a
        ≠
        0
        ,
        −
        1
        ,
        −
        2
        ,
        …
      
    
    
  
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          z
          
            −
            a
          
        
        
          [
          Γ
          (
          1
          −
          s
          )
          
            
              (
              −
              log
              
              (
              z
              )
              )
            
            
              s
              −
              1
            
          
          +
          
            ∑
            
              k
              =
              0
            
            
              ∞
            
          
          ζ
          (
          s
          −
          k
          ,
          a
          )
          
            
              
                
                  log
                  
                    k
                  
                
                
                (
                z
                )
              
              
                k
                !
              
            
          
          ]
        
      
    
    
  
B. R. Johnson (1974). "Generalized Lerch zeta-function". Pacific J. Math. 53 (1): 189–193. 
If s is a positive integer, then
  
    
      
        Φ
        (
        z
        ,
        n
        ,
        a
        )
        =
        
          z
          
            −
            a
          
        
        
          {
          
            ∑
            
              
                
                  k
                  =
                  0
                
                
                  k
                  ≠
                  n
                  −
                  1
                
              
            
            
              ∞
            
          
          ζ
          (
          n
          −
          k
          ,
          a
          )
          
            
              
                
                  log
                  
                    k
                  
                
                
                (
                z
                )
              
              
                k
                !
              
            
          
          +
          
            [
            ψ
            (
            n
            )
            −
            ψ
            (
            a
            )
            −
            log
            
            (
            −
            log
            
            (
            z
            )
            )
            ]
          
          
            
              
                
                  log
                  
                    n
                    −
                    1
                  
                
                
                (
                z
                )
              
              
                (
                n
                −
                1
                )
                !
              
            
          
          }
        
        ,
      
    
    
  
where 
  
    
      
        ψ
        (
        n
        )
      
    
    
   is the digamma function.
A Taylor series in the third variable is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        +
        x
        )
        =
        
          ∑
          
            k
            =
            0
          
          
            ∞
          
        
        Φ
        (
        z
        ,
        s
        +
        k
        ,
        a
        )
        (
        s
        
          )
          
            k
          
        
        
          
            
              (
              −
              x
              
                )
                
                  k
                
              
            
            
              k
              !
            
          
        
        ;
        
          |
        
        x
        
          |
        
        <
        ℜ
        (
        a
        )
        ,
      
    
    
  
where 
  
    
      
        (
        s
        
          )
          
            k
          
        
      
    
    
   is the Pochhammer symbol.
Series at a = -n is given by
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          ∑
          
            k
            =
            0
          
          
            n
          
        
        
          
            
              z
              
                k
              
            
            
              (
              a
              +
              k
              
                )
                
                  s
                
              
            
          
        
        +
        
          z
          
            n
          
        
        
          ∑
          
            m
            =
            0
          
          
            ∞
          
        
        (
        1
        −
        m
        −
        s
        
          )
          
            m
          
        
        
          Li
          
            s
            +
            m
          
        
        
        (
        z
        )
        
          
            
              (
              a
              +
              n
              
                )
                
                  m
                
              
            
            
              m
              !
            
          
        
        ;
         
        a
        →
        −
        n
      
    
    
  
A special case for n = 0 has the following series
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          
            1
            
              a
              
                s
              
            
          
        
        +
        
          ∑
          
            m
            =
            0
          
          
            ∞
          
        
        (
        1
        −
        m
        −
        s
        
          )
          
            m
          
        
        
          Li
          
            s
            +
            m
          
        
        
        (
        z
        )
        
          
            
              a
              
                m
              
            
            
              m
              !
            
          
        
        ;
        
          |
        
        a
        
          |
        
        <
        1
        ,
      
    
    
  
where 
  
    
      
        
          Li
          
            s
          
        
        
        (
        z
        )
      
    
    
   is the polylogarithm.
An asymptotic series for 
  
    
      
        s
        →
        −
        ∞
      
    
    
  
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          z
          
            −
            a
          
        
        Γ
        (
        1
        −
        s
        )
        
          ∑
          
            k
            =
            −
            ∞
          
          
            ∞
          
        
        [
        2
        k
        π
        i
        −
        log
        
        (
        z
        )
        
          ]
          
            s
            −
            1
          
        
        
          e
          
            2
            k
            π
            a
            i
          
        
      
    
    
  
for 
  
    
      
        
          |
        
        a
        
          |
        
        <
        1
        ;
        ℜ
        (
        s
        )
        <
        0
        ;
        z
        ∉
        (
        −
        ∞
        ,
        0
        )
      
    
    
   and
  
    
      
        Φ
        (
        −
        z
        ,
        s
        ,
        a
        )
        =
        
          z
          
            −
            a
          
        
        Γ
        (
        1
        −
        s
        )
        
          ∑
          
            k
            =
            −
            ∞
          
          
            ∞
          
        
        [
        (
        2
        k
        +
        1
        )
        π
        i
        −
        log
        
        (
        z
        )
        
          ]
          
            s
            −
            1
          
        
        
          e
          
            (
            2
            k
            +
            1
            )
            π
            a
            i
          
        
      
    
    
  
for 
  
    
      
        
          |
        
        a
        
          |
        
        <
        1
        ;
        ℜ
        (
        s
        )
        <
        0
        ;
        z
        ∉
        (
        0
        ,
        ∞
        )
        .
      
    
    
  
An asymptotic series in the incomplete Gamma function
  
    
      
        Φ
        (
        z
        ,
        s
        ,
        a
        )
        =
        
          
            1
            
              2
              
                a
                
                  s
                
              
            
          
        
        +
        
          
            1
            
              z
              
                a
              
            
          
        
        
          ∑
          
            k
            =
            1
          
          
            ∞
          
        
        
          
            
              
                e
                
                  −
                  2
                  π
                  i
                  (
                  k
                  −
                  1
                  )
                  a
                
              
              Γ
              (
              1
              −
              s
              ,
              a
              (
              −
              2
              π
              i
              (
              k
              −
              1
              )
              −
              log
              
              (
              z
              )
              )
              )
            
            
              (
              −
              2
              π
              i
              (
              k
              −
              1
              )
              −
              log
              
              (
              z
              )
              
                )
                
                  1
                  −
                  s
                
              
            
          
        
        +
        
          
            
              
                e
                
                  2
                  π
                  i
                  k
                  a
                
              
              Γ
              (
              1
              −
              s
              ,
              a
              (
              2
              π
              i
              k
              −
              log
              
              (
              z
              )
              )
              )
            
            
              (
              2
              π
              i
              k
              −
              log
              
              (
              z
              )
              
                )
                
                  1
                  −
                  s
                
              
            
          
        
      
    
    
  
for 
  
    
      
        
          |
        
        a
        
          |
        
        <
        1
        ;
        ℜ
        (
        s
        )
        <
        0.
      
    
    
  
The Lerch transcendent is implemented as LerchPhi in Maple.