Rahul Sharma (Editor)

Leibniz algebra

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module L over a commutative ring R with a bilinear product [ _ , _ ] satisfying the Leibniz identity

[ [ a , b ] , c ] = [ a , [ b , c ] ] + [ [ a , c ] , b ] .

In other words, right multiplication by any element c is a derivation. If in addition the bracket is alternating ([aa] = 0) then the Leibniz algebra is a Lie algebra. Indeed, in this case [ab] = −[ba] and the Leibniz's identity is equivalent to Jacobi's identity ([a, [bc]] + [c, [ab]] + [b, [ca]] = 0). Conversely any Lie algebra is obviously a Leibniz algebra.

In this sense, Leibniz algebras can be seen as a non-commutative generalization of Lie algebras, and the investigation of which theorems and properties of Lie algebras are still valid for Leibniz algebras is a recurrent theme in the literature. For instance, it has been shown that Engel's theorem still holds for Leibniz algebras and that a weaker version of Levi-Malcev theorem also holds.

The tensor module, T(V) , of any vector space V can be turned into a Loday algebra such that

[ a 1 a n , x ] = a 1 a n x for  a 1 , , a n , x V .

This is the free Loday algebra over V.

Leibniz algebras were discovered by A. Bloh in 1965 who called them D-algebras. They attracted interest after Jean-Louis Loday noticed that the classical Chevalley–Eilenberg boundary map in the exterior module of a Lie algebra can be lifted to the tensor module which yields a new chain complex. In fact this complex is well-defined for any Leibniz algebra. The homology HL(L) of this chain complex is known as Leibniz homology. If L is the Lie algebra of (infinite) matrices over an associative R-algebra A then Leibniz homology of L is the tensor algebra over the Hochschild homology of A.

A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. It has defining identity:

( a b ) c = a ( b c ) + a ( c b ) .

References

Leibniz algebra Wikipedia