Supriya Ghosh (Editor)

Isotopes of polonium

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Polonium (Po) has 33 isotopes, all of which are radioactive, with between 186 and 227 nucleons. 210Po with a half-life of 138.376 days has the longest half-life of naturally occurring polonium. 209Po with a half-life of 125 years has the longest half-life of all isotopes of polonium. 209Po and 208Po (half-life 2.9 years) can be made through the alpha, proton, or deuteron bombardment of lead or bismuth in a cyclotron.

Contents

Polonium-210

210Po is an alpha emitter that has a half-life of 138.376 days; it decays directly to stable 206Pb. A milligram of 210Po emits as many alpha particles per second as 5 grams of 226Ra. A few curies (1 curie equals 37 gigabecquerels) of 210Po emit a blue glow caused by excitation of surrounding air. A single gram of 210Po generates 140 watts of power. Because it emits many alpha particles, which are stopped within a very short distance in dense media and release their energy, 210Po has been used as a lightweight heat source to power thermoelectric cells in artificial satellites; for instance, a 210Po heat source was also in each of the Lunokhod rovers deployed on the surface of the Moon, to keep their internal components warm during the lunar nights. Some anti-static brushes, used for neutralizing static electricity on materials like photographic film, contain a few microcuries of 210Po as a source of charged particles. 210Po is also used in initiators for atomic bombs through the (α,n) reaction with beryllium.

The majority of the time 210Po decays by emission of an alpha particle only, not by emission of an alpha particle and a gamma ray. About one in 100,000 decays results in the emission of a gamma ray. This low gamma ray production rate makes it more difficult to find and identify this isotope. Rather than gamma ray spectroscopy, alpha spectroscopy is the best method of measuring this isotope.

210Po occurs in minute amounts in nature, where it is an intermediate isotope in the uranium series (also known as the uranium series) decay chain. It is generated via beta decay from 210Bi.

210Po is extremely toxic, with one microgram being enough to kill the average adult (250,000 times more toxic than hydrogen cyanide by weight). 210Po was used to kill Russian dissident and ex-FSB officer Alexander V. Litvinenko in 2006, and was suspected as a possible cause of Yasser Arafat's death, following exhumation and analysis of his corpse in 2012–2013.

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • Half-life abbreviations are y=year, d=day, min=minute, s=second, ms=millisecond, µs=microsecond, ns=nanosecond.
  • A superscripted m (or m2, etc.) refers to an isomer of that particular isotope.
  • References

    Isotopes of polonium Wikipedia