Natural nitrogen (N) consists of two stable isotopes, nitrogen-14, which makes up the vast majority of naturally occurring nitrogen, and nitrogen-15. Fourteen radioactive isotopes (radioisotopes) have also been found so far, with atomic masses ranging from 10 to 25, and one nuclear isomer, 11mN. All of these radioisotopes are short-lived, with the longest-lived one being nitrogen-13 with a half-life of 9.965 minutes. All of the others have half-lives below 7.15 seconds, with most of these being below five-eighths of a second. Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of about 200 yoctoseconds.
Contents
The relative atomic mass of nitrogen is 14.0067.
Nitrogen-14
Nitrogen-14 is one of two stable (non-radioactive) isotopes of the chemical element nitrogen, which makes about 99.636% of natural nitrogen.
Nitrogen-14 is one of the very few stable nuclides with both an odd number of protons and of neutrons (seven each). Each of these contributes a nuclear spin of plus or minus spin 1/2, giving the nucleus a total magnetic spin of one.
Like all elements heavier than lithium, the original source of nitrogen-14 and nitrogen-15 in the Universe is believed to be stellar nucleosynthesis, where they are produced as part of the carbon-nitrogen-oxygen cycle.
Nitrogen-14 is the source of naturally-occurring, radioactive, carbon-14. Some kinds of cosmic radiation cause a nuclear reaction with nitrogen-14 in the upper atmosphere of the Earth, creating carbon-14, which decays back to nitrogen-14 with a half-life of 5,730±40 years.
Nitrogen-15
Nitrogen-15, or 15N, is a rare stable isotope of nitrogen. Two sources of nitrogen-15 are the positron emission of oxygen-15 and the beta decay of carbon-15. Nitrogen-15 presents one of the lowest thermal neutron capture cross sections of all isotopes.
Nitrogen-15 is frequently used in NMR (Nitrogen-15 NMR spectroscopy). Unlike the more abundant nitrogen-14, that has an integer nuclear spin and thus a quadrupole moment, 15N has a fractional nuclear spin of one-half, which offers advantages for NMR such as narrower line width.