![]() | ||
Integrated information theory (IIT) attempts to explain what consciousness is and why it might be associated with certain physical systems. Given any such system, the theory predicts whether that system is conscious, to what degree it is conscious, and what particular experience it is having (see Central Identity). According to IIT, a system's consciousness is determined by its causal properties and is therefore an intrinsic, fundamental property of any physical system.
Contents
- Relationship to the Hard Problem of Consciousness
- Axioms essential properties of experience
- Postulates properties required of the physical substrate
- Mathematics formalization of the postulates
- Cause effect space
- Central Identity
- Extensions
- Related Experimental Work
- Reception
- Support
- Criticism
- References
IIT was proposed by neuroscientist Giulio Tononi in 2004, and has been continuously developed over the past decade. The latest version of the theory, labeled IIT 3.0, was published in 2014.
Relationship to the "Hard Problem of Consciousness"
David Chalmers has argued that any attempt to explain consciousness in purely physical terms (i.e. to start with the laws of physics as they are currently formulated and derive the necessary and inevitable existence of consciousness) eventually runs into the so-called "hard problem". Rather than try to start from physical principles and arrive at consciousness, IIT "starts with consciousness" (accepts the existence of consciousness as certain) and reasons about the properties that a postulated physical substrate would have to have in order to account for it. The ability to perform this jump from phenomenology to mechanism rests on IIT's assumption that if a conscious experience can be fully accounted for by an underlying physical system, then the properties of the physical system must be constrained by the properties of the experience.
Specifically, IIT moves from phenomenology to mechanism by attempting to identify the essential properties of conscious experience (dubbed "axioms") and, from there, the essential properties of conscious physical systems (dubbed "postulates").
Axioms: essential properties of experience
The axioms are intended to capture the essential aspects of every conscious experience. Every axiom should apply to every possible experience.
The wording of the axioms has changed slightly as the theory has developed, and the most recent and complete statement of the axioms is as follows:
Postulates: properties required of the physical substrate
The axioms describe regularities in conscious experience, and IIT seeks to explain these regularities. What could account for the fact that every experience exists, is structured, is differentiated, is unified, and is definite? IIT argues that the existence of an underlying causal system with these same properties offers the most parsimonious explanation. Thus a physical system, if conscious, is so by virtue of its causal properties.
The properties required of a conscious physical substrate are called the "postulates," since the existence of the physical substrate is itself only postulated (remember, IIT maintains that the only thing one can be sure of is the existence of one's own consciousness). In what follows, a "physical system" is taken to be a set of elements, each with two or more internal states, inputs that influence that state, and outputs that are influenced by that state (neurons or logic gates are the natural examples). Given this definition of "physical system", the postulates are:
Mathematics: formalization of the postulates
For a complete and thorough account of the mathematical formalization of IIT, see. What follows is intended as a brief summary, adapted from, of the most important quantities involved. Pseudocode for the algorithms used to calculate these quantities can be found at.
A system refers to a set of elements, each with two or more internal states, inputs that influence that state, and outputs that are influenced by that state. A mechanism refers to a subset of system elements. The mechanism-level quantities below are used to assess the integration of any given mechanism, and the system-level quantities are used to assess the integration of sets of mechanisms ("sets of sets").
In order to apply the IIT formalism to a system, its full transition probability matrix (TPM) must be known. The TPM specifies the probability with which any state of a system transitions to any other system state. Each of the following quantities is calculated in a bottom-up manner from the system's TPM.
Cause-effect space
For a system of
In this way, a conceptual structure
Central Identity
IIT addresses the mind-body problem by proposing an identity between phenomenological properties of experience and causal properties of physical systems: The conceptual structure specified by a complex of elements in a state is identical to its experience.
Specifically, the form of the conceptual structure in cause-effect space completely specifies the quality of the experience, while the irreducibility
According to IIT, an experience is thus an intrinsic property of a complex of mechanisms in a state.
Extensions
The calculation of even a modestly-sized system's
A significant computational challenge in calculating integrated information is finding the Minimum Information Partition of a neural system, which requires iterating through all possible network partitions. To solve this problem, Daniel Toker has suggested using the most modular decomposition of a network as an extremely quick proxy for the Minimum Information Partition.
Related Experimental Work
While the algorithm for assessing a system's
Despite these challenges, researchers have attempted to use measures of information integration and differentiation to assess levels of consciousness in a variety of subjects. For instance, a recent study using a less computationally-intensive proxy for
IIT also makes several predictions which fit well with existing experimental evidence, and can be used to explain some counterintuitive findings in consciousness research. For example, IIT can be used to explain why some brain regions, such as the cerebellum do not appear to contribute to consciousness, despite their size and/or functional importance. IIT can also help to explain why severing the corpus callosum appears to lead to the development of two separate consciousnesses in split-brain patients.
Reception
Integrated Information Theory has received both broad criticism and support.
Support
Neuroscientist Christof Koch, who has helped to develop the theory, has called IIT "the only really promising fundamental theory of consciousness.” Technologist Virgil Griffith says "IIT is currently the leading theory of consciousness."
Criticism
Meanwhile, some critics have challenged that IIT proposes conditions which are necessary for consciousness, but are not entirely sufficient. Objections have also been made to the claim that all of IIT's axioms are self-evident. Since IIT is not a functionalist theory of consciousness, historical criticisms of non-functionalism have been levied against it. Disagreements over the definition of consciousness also lead to inevitable criticism of the theory.