![]() | ||
In mathematics, an inequality is a relation that holds between two values when they are different (see also: equality).
Contents
- Properties
- Transitivity
- Converse
- Addition and subtraction
- Multiplication and division
- Additive inverse
- Multiplicative inverse
- Applying a function to both sides
- Ordered fields
- Chained notation
- Sharp inequalities
- Inequalities between means
- Power inequalities
- Examples
- Well known inequalities
- Complex numbers and inequalities
- Vector inequalities
- General existence theorems
- References
If the values in question are elements of an ordered set, such as the integers or the real numbers, they can be compared in size.
In contrast to strict inequalities, there are two types of inequality relations that are not strict:
In engineering sciences, a less formal use of the notation is to state that one quantity is "much greater" than another, normally by several orders of magnitude.
Properties
Inequalities are governed by the following properties. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict inequalities (< and >) and (in the case of applying a function) monotonic functions are limited to strictly monotonic functions.
Transitivity
The transitive property of inequality states:
Converse
The relations ≤ and ≥ are each other's converse:
Addition and subtraction
A common constant c may be added to or subtracted from both sides of an inequality:
i.e., the real numbers are an ordered group under addition.
Multiplication and division
The properties that deal with multiplication and division state:
More generally, this applies for an ordered field, see below.
Additive inverse
The properties for the additive inverse state:
Multiplicative inverse
The properties for the multiplicative inverse state:
These can also be written in chained notation as:
Applying a function to both sides
Any monotonically increasing function may be applied to both sides of an inequality (provided they are in the domain of that function) and it will still hold. Applying a monotonically decreasing function to both sides of an inequality means the opposite inequality now holds. The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function.
If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. The rules for additive and multiplicative inverses are both examples of applying a strictly monotonically decreasing function.
A few examples of this rule are:
Ordered fields
If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:
Note that both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because −1 is the square of i and would therefore be positive.
The non-strict inequalities ≤ and ≥ on real numbers are total orders. The strict inequalities < and > on real numbers are strict total orders.
Chained notation
The notation a < b < c stands for "a < b and b < c", from which, by the transitivity property above, it also follows that a < c. Obviously, by the above laws, one can add/subtract the same number to all three terms, or multiply/divide all three terms by same nonzero number and reverse all inequalities according to sign. Hence, for example, a < b + e < c is equivalent to a − e < b < c − e.
This notation can be generalized to any number of terms: for instance, a1 ≤ a2 ≤ ... ≤ an means that ai ≤ ai+1 for i = 1, 2, ..., n − 1. By transitivity, this condition is equivalent to ai ≤ aj for any 1 ≤ i ≤ j ≤ n.
When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1/2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1/2.
Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For instance, a < b = c ≤ d means that a < b, b = c, and c ≤ d. This notation exists in a few programming languages such as Python.
Sharp inequalities
An inequality is said to be sharp, if it cannot be relaxed and still be valid in general. For instance, suppose a is a real number, then the inequality a2 ≥ 0 is sharp, whereas the inequality a2 ≥ −1 is not sharp.
Inequalities between means
There are many inequalities between means. For example, for any positive numbers a1, a2, …, an we have H ≤ G ≤ A ≤ Q, where
Power inequalities
A "power inequality" is an inequality containing ab terms, where a and b are real positive numbers or variable expressions. They often appear in mathematical olympiads exercises.
Examples
Well-known inequalities
Mathematicians often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names:
Complex numbers and inequalities
The set of complex numbers
Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ −a). In either case 0 ≤ a2; this means that
However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if a ≤ b then a + c ≤ b + c"). Sometimes the lexicographical order definition is used:
It can easily be proven that for this definition a ≤ b implies a + c ≤ b + c.
Vector inequalities
Inequality relationships similar to those defined above can also be defined for column vectors. If we let the vectors
Similarly, we can define relationships for
The property of trichotomy (as stated above) is not valid for vector relationships. For example, when
General existence theorems
For a general system of polynomial inequalities, one can find a condition for a solution to exist. Firstly, any system of polynomial inequalities can be reduced to a system of quadratic inequalities by increasing the number of variables and equations (for example by setting a square of a variable equal to a new variable). A single quadratic polynomial inequality in n − 1 variables can be written as:
where X is a vector of the variables
Systems of inequalities can be written in terms of matrices A, B, C, etc. and the conditions for existence of solutions can be written as complicated expressions in terms of these matrices. The solution for two polynomial inequalities in two variables tells us whether two conic section regions overlap or are inside each other. The general solution is not known but such a solution could be theoretically used to solve such unsolved problems as the kissing number problem. However, the conditions would be so complicated as to require a great deal of computing time or clever algorithms.