![]() | ||
The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is an architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a switched-circuit-style network, rather than strictly over an IP packet-switched network. Alternative methods of delivering voice or other multimedia services over IP have become available on smartphones (e.g. VoIP or Skype), but they have not become standardized across the industry. IMS is an architectural framework to provide such standardization.
Contents
- History
- Architecture
- Access network
- Core network
- CSCF Call Session Control Function
- Application servers
- Media servers
- Breakout gateway
- PSTN gateways
- Media resources
- NGN interconnection
- Charging
- IMS Based PES Architecture
- Session handling
- Initial filter criteria
- Security aspects of early IMS and non 3GPP systems
- Books
- References
IMS was originally designed by the wireless standards body 3rd Generation Partnership Project (3GPP), as a part of the vision for evolving mobile networks beyond GSM. Its original formulation (3GPP Rel-5) represented an approach to delivering "Internet services" over GPRS. This vision was later updated by 3GPP, 3GPP2 and ETSI TISPAN by requiring support of networks other than GPRS, such as Wireless LAN, CDMA2000 and fixed lines.
To ease the integration with the Internet, IMS uses IETF protocols wherever possible, e.g., SIP (Session Initiation Protocol). According to the 3GPP, IMS is not intended to standardize applications, but rather to aid the access of multimedia and voice applications from wireless and wireline terminals, i.e., to create a form of fixed-mobile convergence (FMC). This is done by having a horizontal control layer that isolates the access network from the service layer. From a logical architecture perspective, services need not have their own control functions, as the control layer is a common horizontal layer. However, in implementation this does not necessarily map into greater reduced cost and complexity.
Alternative and overlapping technologies for access and provisioning of services across wired and wireless networks include combinations of Generic Access Network, soft switches and "naked" SIP.
Since it is becoming increasingly easier to access content and contacts using mechanisms outside the control of traditional wireless/fixed operators, the interest of IMS is being challenged.
Examples of global standards based on IMS are MMTel which is the basis for Voice over LTE (VoLTE) and Rich Communication Services (RCS) which is also known as joyn or Advanced Messaging.
History
Architecture
Each of the functions in the diagram is explained below.
The IP multimedia core network subsystem is a collection of different functions, linked by standardized interfaces, which grouped form one IMS administrative network. A function is not a node (hardware box): An implementer is free to combine two functions in one node, or to split a single function into two or more nodes. Each node can also be present multiple times in a single network, for dimensioning, load balancing or organizational issues.
Access network
The user can connect to IMS in various ways, most of which use the standard IP. IMS terminals (such as mobile phones, personal digital assistants (PDAs) and computers) can register directly on IMS, even when they are roaming in another network or country (the visited network). The only requirement is that they can use IP and run SIP user agents. Fixed access (e.g., Digital Subscriber Line (DSL), cable modems, Ethernet), mobile access (e.g. W-CDMA, CDMA2000, GSM, GPRS) and wireless access (e.g., WLAN, WiMAX) are all supported. Other phone systems like plain old telephone service (POTS—the old analogue telephones), H.323 and non IMS-compatible systems, are supported through gateways.
Core network
HSS – Home subscriber server:
The home subscriber server (HSS), or user profile server function (UPSF), is a master user database that supports the IMS network entities that actually handle calls. It contains the subscription-related information (subscriber profiles), performs authentication and authorization of the user, and can provide information about the subscriber's location and IP information. It is similar to the GSM home location register (HLR) and Authentication centre (AuC).
A subscriber location function (SLF) is needed to map user addresses when multiple HSSs are used.
User identities:
Various identities may be associated with IMS: IP multimedia private identity (IMPI), IP multimedia public identity (IMPU), globally routable user agent URI (GRUU), wildcarded public user identity. Both IMPI and IMPU are not phone numbers or other series of digits, but uniform resource identifier (URIs), that can be digits (a Tel URI, such as tel:+1-555-123-4567) or alphanumeric identifiers (a SIP URI, such as sip:[email protected]" ).
IP Multimedia Private Identity:
The IP Multimedia Private Identity (IMPI) is a unique permanently allocated global identity assigned by the home network operator, and is used, for example, for Registration, Authorization, Administration, and Accounting purposes. Every IMS user shall have one IMPI.
IP Multimedia Public Identity:
The IP Multimedia Public Identity (IMPU) is used by any user for requesting communications to other users (e.g. this might be included on a business card). There can be multiple IMPU per IMPI. The IMPU can also be shared with another phone, so that both can be reached with the same identity (for example, a single phone-number for an entire family).
Globally Routable User Agent URI:
Globally Routable User Agent URI (GRUU) is an identity that identifies a unique combination of IMPU and UE instance. There are two types of GRUU: Public-GRUU (P-GRUU) and Temporary GRUU (T-GRUU).
Wildcarded Public User Identity:
A wildcarded Public User Identity expresses a set of IMPU grouped together.
The HSS subscriber database contains the IMPU, IMPI, IMSI, MSISDN, subscriber service profiles, service triggers, and other information.
CSCF – Call Session Control Function
Several roles of SIP servers or proxies, collectively called Call Session Control Function (CSCF), are used to process SIP signalling packets in the IMS.
Application servers
SIP Application servers (AS) host and execute services, and interface with the S-CSCF using SIP. An example of an application server that is being developed in 3GPP is the Voice call continuity Function (VCC Server). Depending on the actual service, the AS can operate in SIP proxy mode, SIP UA (user agent) mode or SIP B2BUA mode. An AS can be located in the home network or in an external third-party network. If located in the home network, it can query the HSS with the Diameter Sh or Si interfaces (for a SIP-AS).
Functional model
The AS-ILCM (Application Server - Incoming Leg Control Model) and AS-OLCM (Application Sever - Outgoing Leg Control Model) store transaction state, and may optionally store session state depending on the specific service being executed. The AS-ILCM interfaces to the S-CSCF (ILCM) for an incoming leg and the AS-OLCM interfaces to the S-CSCF (OLCM) for an outgoing leg. Application Logic provides the service(s) and interacts between the AS-ILCM and AS-OLCM.
Public Service Identity
Public Service Identities (PSI) are identities that identify services, which are hosted by application servers. As user identities, PSI takes the form of either a SIP or Tel URI. PSIs are stored in the HSS either as a distinct PSI or as a wildcarded PSI:
Media servers
The Media Resource Function (MRF) provides media related functions such as media manipulation (e.g. voice stream mixing) and playing of tones and announcements.
Each MRF is further divided into a media resource function controller (MRFC) and a media resource function processor (MRFP).
The Media Resource Broker (MRB) is a functional entity that is responsible for both collection of appropriate published MRF information and supplying of appropriate MRF information to consuming entities such as the AS. MRB can be used in two modes:
Breakout gateway
A Breakout Gateway Control Function (BGCF) is a SIP proxy which processes requests for routing from an S-CSCF when the S-CSCF has determined that the session cannot be routed using DNS or ENUM/DNS. It includes routing functionality based on telephone numbers.
PSTN gateways
A PSTN/CS gateway interfaces with PSTN circuit switched (CS) networks. For signalling, CS networks use ISDN User Part (ISUP) (or BICC) over Message Transfer Part (MTP), while IMS uses SIP over IP. For media, CS networks use Pulse-code modulation (PCM), while IMS uses Real-time Transport Protocol (RTP).
Media resources
Media Resources are those components that operate on the media plane and are under the control of IMS core functions. Specifically, Media Server (MS) and Media gateway (MGW)
NGN interconnection
There are two types of next-generation networking interconnection:
An NGN interconnection mode can be direct or indirect. Direct interconnection refers to the interconnection between two network domains without any intermediate network domain. Indirect interconnection at one layer refers to the interconnection between two network domains with one or more intermediate network domain(s) acting as transit networks. The intermediate network domain(s) provide(s) transit functionality to the two other network domains. Different interconnection modes may be used for carrying service layer signalling and media traffic.
Charging
Offline charging is applied to users who pay for their services periodically (e.g., at the end of the month). Online charging, also known as credit-based charging, is used for prepaid services, or real-time credit control of postpaid services. Both may be applied to the same session.
Charging function addresses are addresses distributed to each IMS entities and provide a common location for each entity to send charging information. charging data function (CDF) addresses are used for offline billing and Online Charging Function (OCF) for online billing.
Each session carries an IMS Charging Identifier (ICID) as a unique identifier generated by the first IMS entity involved in a SIP transaction and used for the correlation with CDRs. Inter Operator Identifier (IOI) is a globally unique identifier shared between sending and receiving networks. Each domain has its own charging network. Billing systems in different domains will also exchange information, so that roaming charges can be applied.
IMS-Based PES Architecture
IMS-based PES (PSTN Emulation System) provides IP networks services to analog devices. IMS-based PES allows non-IMS devices to appear to IMS as normal SIP users. Analog terminal using standard analog interfaces can connect to IMS-based PES in two ways -
Both A-MGW and VGW are unaware of the services. They only relay call control signalling to and from the PSTN terminal. Session control and handling is done by IMS components.
Session handling
One of the most important features of IMS, that of allowing for a SIP application to be dynamically and differentially (based on the user's profile) triggered, is implemented as a filter-and-redirect signalling mechanism in the S-CSCF.
The S-CSCF might apply filter criteria to determine the need to forward SIP requests to AS. It is important to note that services for the originating party will be applied in the originating network, while the services for the terminating party will be applied in the terminating network, all in the respective S-CSCFs.
Initial filter criteria
An initial filter criteria (iFC) is an XML-based format used for describing control logic. iFCs represent a provisioned subscription of a user to an application. They are stored in the HSS as part of the IMS Subscription Profile and are downloaded to the S-CSCF upon user registration (for registered users) or on processing demand (for services, acting as unregistered users). iFCs are valid throughout the registration lifetime or until the User Profile is changed.
The iFC is composed of:
There are two types of iFCs:
Security aspects of early IMS and non-3GPP systems
It is envisaged that security defined in TS 33.203 may not be available for a while especially because of the lack of USIM/ISIM interfaces and prevalence of devices that support IPv4. For this situation, to provide some protection against the most significant threats, 3GPP defines some security mechanisms, which are informally known as "early IMS security," in TR33.978. This mechanism relies on the authentication performed during the network attachment procedures, which binds between the user's profile and its IP address. This mechanism is also weak because the signaling is not protected on the user–network interface.
CableLabs in PacketCable 2.0, which adopted also the IMS architecture but has no USIM/ISIM capabilities in their terminals, published deltas to the 3GPP specifications where the Digest-MD5 is a valid authentication option. Later on, TISPAN also did a similar effort given their fixed networks scopes, although the procedures are different. To compensate for the lack of IPsec capabilities, TLS has been added as an option for securing the Gm interface. Later 3GPP Releases have included the Digest-MD5 method, towards a Common-IMS platform, yet in its own and again different approach. Although all 3 variants of Digest-MD5 authentication have the same functionality and are the same from the IMS terminal's perspective, the implementations on the Cx interface between the S-CSCF and the HSS are different.