![]() | ||
In mathematics, an I-bundle is a fiber bundle whose fiber is an interval and whose base is a manifold. Any kind of interval, open, closed, semi-open, semi-closed, open-bounded, compact, even rays, can be the fiber.
Two simple examples of I-bundles are the annulus and the Möbius band, the only two possible I-bundles over the circle
Curiously, there are only two kinds of I-bundles when the base manifold is any surface but the Klein bottle
Together with the Seifert fiber spaces, I-bundles are fundamental elementary building blocks for the description of three-dimensional spaces. These observations are simple well known facts on elementary 3-manifolds.
Line bundles are both I-bundles and vector bundles of rank one. When considering I-bundles, one is interested mostly in their topological properties and not their possible vector properties, as we might be for line bundles.