Kalpana Kalpana (Editor)

Hydroboration

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In chemistry, hydroboration refers to the addition of a hydrogen-boron bond to C-C, C-N, and C-O double bonds, as well as C-C triple bonds. This chemical reaction is useful in the organic synthesis of organic compounds. The development of this technology and the underlying concepts were recognized by the Nobel Prize in Chemistry to Herbert C. Brown. He shared the Nobel prize in chemistry with Georg Wittig in 1979 for his pioneering research on organoboranes as important synthetic intermediates.

Contents

Hydroboration produces organoborane compounds that react with a variety of reagents to produce useful compounds, such as alcohols, amines, alkyl halides. The most widely known reaction of the organoboranes is oxidation to produce alcohols typically by hydrogen peroxide. This type of reaction has promoted research on hydroboration because of its mild condition and a wide scope of olefins tolerated. Another research subtheme is metal-catalysed hydroboration.

Addition of a H-B bond to C-C double bonds

Hydroboration is typically anti-Markovnikov, i.e. the hydrogen adds to the most substituted carbon of the double bond. That the regiochemistry is reverse of a typical HX addition reflects the polarity of the Bδ+-Hδ− bonds. Hydroboration proceeds via a four-membered transition state: the hydrogen and the boron atoms added on the same face of the double bond. Granted that the mechanism is concerted, the formation of the C-B bond proceeds slightly faster than the formation of the C-H bond. As a result, in the transition state, boron develops a partially negative charge while the more substituted carbon bears a partially positive charge. This partial positive charge is better supported by the more substituted carbon.

If BH3 is used as the hydroborating reagent, reactions typically proceed beyond the monoalkyl borane compounds, especially for less sterically hindered small olefins. Trisubstituted olefins can rapidly produce dialkyl boranes, but further alkylation of the organoboranes is slowed because of steric hindrance. This significant rate difference in producing di- and tri-alkyl boranes is useful in the synthesis of bulky boranes that can enhance regioselectivity (see below).

Reactions involving substituted alkenes

For trisubstituted alkenes such as 1, boron is predominantly placed on the less substituted carbon. The minor product, in which the boron atom is placed on the more substituted carbon, is usually produced in less than 10%. A notable case with lower regioselectivity is styrene, and the selectivity is strongly influenced by the substituent on the para position.

Hydroboration of 1,2-disubstituted alkenes, such as a cis or trans olefin, produces generally a mixture of the two organoboranes of comparable amounts, even if the substituents are very different in terms of steric bulk. For such 1,2-disubstituted olefins, regioselectivity can be observed only when one of the two substituents is a phenyl ring. In such cases, such as trans-1-phenylpropene, the boron atom is placed on the carbon adjacent to the phenyl ring. The observations above indicate that the addition of H-B bond to olefins is under electronic control rather than steric control.

Reactions of Organoboranes

The C-B bonds generated by hydroboration are reactive with various reagents, the most common one being hydrogen peroxide. Because the addition of H-B to olefins is stereospecific, this oxidation reaction will be diastereoselective when the alkene is tri-substituted. Hydroboration-oxidation is thus an excellent way of producing alcohols in a stereospecific and anti-Markovnikov fashion.

Hydroboration can also lead to amines by treating the intermediate organoboranes with chloramine or O-hydroxylaminesulfonic acid (HSA).

Terminal olefins are converted to the corresponding alkyl bromides and alkyl iodides by treating the organoborane intermediates with bromine or iodine. Such reactions have not however proven very popular, because succinimide-based reagents such as NIS and NBS are more versatile and do not require rigorous conditions as do organoboranes. etc.

References

Hydroboration Wikipedia