In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.
Contents
- Definitions and main properties
- Graded algebra and polynomial rings
- Additivity
- Quotient by a non zero divisor
- Hilbert series and Hilbert polynomial of a polynomial ring
- Shape of the Hilbert series and dimension
- Degree of a projective variety and Bzouts theorem
- Computation of Hilbert series and Hilbert polynomial
- Generalization to coherent sheaves
- References
These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes.
The typical situations where these notions are used are the following:
The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space.
Hilbert polynomial and Hilbert series are important in computational algebraic geometry, as they are the easiest known way for computing the dimension and the degree of an algebraic variety defined by explicit polynomial equations.
Definitions and main properties
Let us consider a finitely generated graded commutative algebra S over a field K, which is finitely generated by elements of positive degree. This means that
and that
The Hilbert function
maps the integer n onto the dimension of the K-vector space Sn. The Hilbert series, which is called Hilbert–Poincaré series in the more general setting of graded vector spaces, is the formal series
If S is generated by h homogeneous elements of positive degrees
where Q is a polynomial with integer coefficients.
If S is generated by elements of degree 1 then the sum of the Hilbert series may be rewritten as
where P is a polynomial with positive integer coefficients.
In this case the series expansion of this rational fraction is
where the binomial coefficient
This shows that there exists a unique polynomial
The Hilbert polynomial is a numerical polynomial, since the dimensions are integers, but the polynomial almost never has integer coefficients (Schenck 2003, pp. 41).
All these definitions may be extended to finitely generated graded modules over S, with the only difference that a factor tm appears in the Hilbert series, where m is the minimal degree of the generators of the module, which may be negative.
The Hilbert function, the Hilbert series and the Hilbert polynomial of a filtered algebra are those of the associated graded algebra.
The Hilbert polynomial of a projective variety V in Pn is defined as the Hilbert polynomial of the homogeneous coordinate ring of V.
Graded algebra and polynomial rings
Polynomial rings and their quotients by homogeneous ideals are typical graded algebras. Conversely, if S is a graded algebra generated over the field K by n homogeneous elements g1, ..., gn of degree 1, then the map which sends Xi onto gi defines an homomorphism of graded rings from
Thus, the graded algebras generated by elements of degree 1 are exactly, up to an isomorphism, the quotients of polynomial rings by homogeneous ideals. Therefore, the remainder of this article will be restricted to the quotients of polynomial rings by ideals.
Additivity
Hilbert series and Hilbert polynomial are additive relatively to exact sequences. More precisely, if
is an exact sequence of graded or filtered modules, then we have
and
This follows immediately from the same property for the dimension of vector spaces.
Quotient by a non-zero divisor
Let A be a graded algebra and f a homogeneous element of degree d in A which is not a zero divisor. Then we have
It follows immediately from the additivity on the exact sequence
where the arrow labeled f is the multiplication by f and
Hilbert series and Hilbert polynomial of a polynomial ring
The Hilbert series of the polynomial ring
It follows that the Hilbert polynomial is
The proof that the Hilbert series has this simple form is obtained by applying recursively the previous formula for the quotient by a non zero divisor (here
Shape of the Hilbert series and dimension
A graded algebra A generated by homogeneous elements of degree 1 has Krull dimension zero if the maximal homogeneous ideal, that is the ideal generated by the homogeneous elements of degree 1, is nilpotent. This implies that the dimension of A as a K-vector space is finite and the Hilbert series of A is a polynomial P(t) such that P(1) is equal to the dimension of A as a K vector space.
If the Krull dimension of A is positive, there is a homogeneous element f of degree one which is not a zero divisor (in fact almost all elements of degree one have this property). The Krull dimension of A/(f) is the Krull dimension of A minus one.
The additivity of Hilbert series shows that
where the polynomial P(t) is such that P(1) ≠ 0 and d is the Krull dimension of A.
This formula for the Hilbert series implies that the degree of the Hilbert polynomial is d and that its leading coefficient is P(1)/d!.
Degree of a projective variety and Bézout's theorem
The Hilbert series allows us to compute the degree of an algebraic variety as the value at 1 of the numerator of the Hilbert series. This provides also a simple proof of Bézout's theorem. For this purpose, let us consider an projective algebraic set V defined as the set of the zeros of a homogeneous ideal
If the dimension of V, equal to the dimension of R is d, the degree of V is the number of points of intersection, counted with multiplicity, of V with the intersection of
for
is a polynomial, which is equal to the numerator
Similarly, if f is a homogeneous polynomial of degree
shows that
Looking on the numerators this proves the following generalization of Bézout's theorem:
If f is a homogeneous polynomial of degree
The usual Bézout's theorem is easily deduced by starting from a hypersurface and intersecting it, one after the other, with
Computation of Hilbert series and Hilbert polynomial
The Hilbert polynomial is easily deducible from the Hilbert series. This section describes how the Hilbert series may be computed in the case of a quotient of a polynomial ring, filtered or graded by the total degree.
Thus let K a field,
The computation of the Hilbert series is based on the fact that the filtered algebra R/I and the graded algebras R/H and R/G have the same Hilbert series.
Thus the computation of the Hilbert series is reduced, through the computation of a Gröbner basis, to the same problem for an ideal generated by monomials, which is usually much easier than the computation of the Gröbner basis. The computational complexity of the whole computation depends mainly on the regularity, which is the degree of the numerator of the Hilbert series. In fact the Gröbner basis may be computed by linear algebra over the polynomials of degree bounded by the regularity.
The computation of Hilbert series and Hilbert polynomials are available in most computer algebra systems. For example in both Maple and Magma these functions are named HilbertSeries and HilbertPolynomial.
Generalization to coherent sheaves
In algebraic geometry, graded rings generated by elements of degree 1 produce projective schemes by Proj construction while finitely generated graded modules correspond to coherent sheaves. If
This function is indeed a polynomial. For large m it agrees with dim