Preview release Haskell 2014 announced | ||
![]() | ||
Paradigm functional, imperative, lazy/non-strict, modular Designed by Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark Jones, Simon Peyton Jones, John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin Runciman, Philip Wadler First appeared 1990; 27 years ago (1990) Stable release Haskell 2010 / July 2010; 6 years ago (2010-07) Typing discipline static, strong, inferred |
Haskell /ˈhæskəl/ is a standardized, general-purpose purely functional programming language, with non-strict semantics and strong static typing. It is named after logician Haskell Curry. The latest standard of Haskell is Haskell 2010. As of May 2016, a group is working on the next version, Haskell 2020.
Contents
- History
- Haskell 10 to 14
- Haskell 98
- Haskell 2010
- Features
- Code examples
- Implementations
- Applications
- Industry
- Web
- Criticism
- Related languages
- Conferences and workshops
- References
Haskell features a type system with type inference and lazy evaluation. Type classes first appeared in the Haskell programming language. Its main implementation is the Glasgow Haskell Compiler.
Haskell is based on the semantics, but not the syntax, of the language Miranda, which served to focus the efforts of the initial Haskell working group. Haskell is used widely in academia and also used in industry.
History
Following the release of Miranda by Research Software Ltd, in 1985, interest in lazy functional languages grew. By 1987, more than a dozen non-strict, purely functional programming languages existed. Of these, Miranda was used most widely, but it was proprietary software. At the conference on Functional Programming Languages and Computer Architecture (FPCA '87) in Portland, Oregon, a meeting was held during which participants formed a strong consensus that a committee should be formed to define an open standard for such languages. The committee's purpose was to consolidate the existing functional languages into a common one that would serve as a basis for future research in functional-language design.
Haskell 1.0 to 1.4
The first version of Haskell ("Haskell 1.0") was defined in 1990. The committee's efforts resulted in a series of language definitions (1.0, 1.1, 1.2, 1.3, 1.4).
Haskell 98
In late 1997, the series culminated in Haskell 98, intended to specify a stable, minimal, portable version of the language and an accompanying standard library for teaching, and as a base for future extensions. The committee expressly welcomed creating extensions and variants of Haskell 98 via adding and incorporating experimental features.
In February 1999, the Haskell 98 language standard was originally published as The Haskell 98 Report. In January 2003, a revised version was published as Haskell 98 Language and Libraries: The Revised Report. The language continues to evolve rapidly, with the Glasgow Haskell Compiler (GHC) implementation representing the current de facto standard.
Haskell 2010
In early 2006, the process of defining a successor to the Haskell 98 standard, informally named Haskell Prime, began. This was intended to be an ongoing incremental process to revise the language definition, producing a new revision up to once per year. The first revision, named Haskell 2010, was announced in November 2009 and published in July 2010.
Haskell 2010 adds the foreign function interface (FFI) to Haskell, allowing for bindings to other programming languages, fixes some syntax issues (changes in the formal grammar), and bans so-called n-plus-k-patterns, that is, definitions of the form fact (n+1) = (n+1) * fact n
are no longer allowed. It introduces the Language-Pragma-Syntax-Extension which allows for code designating a Haskell source as Haskell 2010 or requiring certain extensions to the Haskell language. The names of the extensions introduced in Haskell 2010 are DoAndIfThenElse, HierarchicalModules, EmptyDataDeclarations, FixityResolution, ForeignFunctionInterface, LineCommentSyntax, PatternGuards, RelaxedDependencyAnalysis, LanguagePragma and NoNPlusKPatterns.
Features
Haskell features lazy evaluation, pattern matching, list comprehension, type classes, and type polymorphism. It is a purely functional language, which means that in general, functions in Haskell have no side effects. A distinct construct exists to represent side effects, orthogonal to the type of functions. A pure function may return a side effect which is subsequently executed, modeling the impure functions of other languages.
Haskell has a strong, static type system based on Hindley–Milner type inference. Haskell's principal innovation in this area is to add type classes, originally conceived as a principled way to add overloading to the language, but since finding many more uses.
The construct which represents side effects is an example of a monad. Monads are a general framework which can model different kinds of computation, including error handling, nondeterminism, parsing, and software transactional memory. Monads are defined as ordinary datatypes, but Haskell provides some syntactic sugar for their use.
Haskell has an open, published specification, and multiple implementations exist. Its main implementation, the Glasgow Haskell Compiler (GHC), is both an interpreter and native-code compiler that runs on most platforms. GHC is noted for its high-performance implementation of concurrency and parallelism, and for having a rich type system incorporating recent innovations such as generalized algebraic data types and type families.
A growing active community exists around the language, and more than 5,400 third-party open-source libraries and tools are available in the online package repository Hackage.
Code examples
The following is a Hello world program written in Haskell:
Here is the factorial function in Haskell, defined in a few different ways:
An efficient implementation of the Fibonacci numbers, as an infinite list, is this:
The Int type refers to a machine-sized integer (used as a list subscript with the !! operator), while Integer is an arbitrary-precision integer. For example, using Integer, the factorial code above easily computes factorial 100000
as a huge number, of 456,574 digits, with no loss of precision.
This is an implementation of an algorithm similar to quick sort over lists, in which the first element is taken as the pivot:
Implementations
All listed implementations are distributed under open source licenses.
Implementations which comply fully, or very nearly, with the Haskell 98 standard, include:
Implementations no longer being actively maintained include:
Implementations not fully Haskell 98 compliant, and using a variant Haskell language, include:
Applications
Industry
Web
Haskell web frameworks exist, including:
Criticism
Jan-Willem Maessen, in 2002, and Simon Peyton Jones, in 2003, discussed problems associated with lazy evaluation while also acknowledging the theoretical motives for it, in addition to purely practical considerations such as improved performance. They note that, in addition to adding some performance overhead, lazy evaluation makes it more difficult for programmers to reason about the performance of their code (particularly its space use).
Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn in 2003 also observed some stumbling blocks for Haskell learners: "The subtle syntax and sophisticated type system of Haskell are a double edged sword – highly appreciated by experienced programmers but also a source of frustration among beginners, since the generality of Haskell often leads to cryptic error messages." To address these, researchers from Utrecht University developed an advanced interpreter called Helium which improved the user-friendliness of error messages by limiting the generality of some Haskell features, and in particular removing support for type classes.
Ben Lippmeier designed Disciple as a strict-by-default (lazy by explicit annotation) dialect of Haskell with a type-and-effect system, to address Haskell's difficulties in reasoning about lazy evaluation and in using traditional data structures such as mutable arrays. He argues (p. 20) that "destructive update furnishes the programmer with two important and powerful tools... a set of efficient array-like data structures for managing collections of objects, and ... the ability to broadcast a new value to all parts of a program with minimal burden on the programmer."
Robert Harper, one of the authors of Standard ML, has given his reasons for not using Haskell to teach introductory programming. Among these are the difficulty of reasoning about resource use with non-strict evaluation, that lazy evaluation complicates the definition of data types and inductive reasoning, and the "inferiority" of Haskell's (old) class system compared to ML's module system.
It was consistently criticised by developers due to the lack of good management of different versions of a particular library by default build tool cabal. Although this has been addressed by the release of the Stack, cabal continues to be shipped as the default build tool.
Related languages
Clean is a close, slightly older relative of Haskell. Its biggest deviation from Haskell is in the use of uniqueness types instead of monads for I/O and side-effects.
A series of languages inspired by Haskell, but with different type systems, have been developed, including:
Java virtual machine (JVM) based:
Other related languages include:
Haskell has served as a testbed for many new ideas in language design. There have been many Haskell variants produced, exploring new language ideas, including:
Conferences and workshops
The Haskell community meets regularly for research and development activities. The main events are:
Since 2006, a series of organized hackathons has occurred, the Hac series, aimed at improving the programming language tools and libraries.