Puneet Varma (Editor)

Hardy–Littlewood zeta function conjectures

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, the Hardy–Littlewood zeta-function conjectures, named after Godfrey Harold Hardy and John Edensor Littlewood, are two conjectures concerning the distances between zeros and the density of zeros of the Riemann zeta function.

Contents

Conjectures

In 1914 Godfrey Harold Hardy proved that the Riemann zeta function ζ ( 1 2 + i t ) has infinitely many real zeros.

Let N ( T ) be the total number of real zeros, N 0 ( T ) be the total number of zeros of odd order of the function ζ ( 1 2 + i t ) , lying on the interval ( 0 , T ] .

Hardy and Littlewood claimed two conjectures. These conjectures – on the distance between real zeros of ζ ( 1 2 + i t ) and on the density of zeros of ζ ( 1 2 + i t ) on intervals ( T , T + H ] for sufficiently great T > 0 , H = T a + ε and with as less as possible value of a > 0 , where ε > 0 is an arbitrarily small number – open two new directions in the investigation of the Riemann zeta function.

1. For any ε > 0 there exists such T 0 = T 0 ( ε ) > 0 that for T T 0 and H = T 0.25 + ε the interval ( T , T + H ] contains a zero of odd order of the function ζ ( 1 2 + i t ) .

2. For any ε > 0 there exist T 0 = T 0 ( ε ) > 0 and c = c ( ε ) > 0 , such that for T T 0 and H = T 0.5 + ε the inequality N 0 ( T + H ) N 0 ( T ) c H is true.

Status

In 1942 Atle Selberg studied the problem 2 and proved that for any ε > 0 there exists such T 0 = T 0 ( ε ) > 0 and c = c ( ε ) > 0 , such that for T T 0 and H = T 0.5 + ε the inequality N ( T + H ) N ( T ) c H log T is true.

In his turn, Selberg claim his conjecture that it's possible to decrease the value of the exponent a = 0.5 for H = T 0.5 + ε which was proved forty-two years later by A.A. Karatsuba.

References

Hardy–Littlewood zeta-function conjectures Wikipedia