![]() | ||
Glutamate flavoring is a generic name for flavor-enhancing compounds based on glutamic acid and its salts (glutamates). These compounds provide an umami (savory) taste to food.
Contents
- Glutamic acid versus glutamates
- Discovery
- Isomers
- Taste perception
- Timeline
- Excitotoxicity
- European Union
- United States
- Australia and New Zealand
- Canada
- Ingredients
- References
Glutamic acid and glutamates are natural constituent of many fermented or aged foods, including soy sauce, fermented bean paste, and cheese, and also occur in hydrolyzed protein such as yeast extract. The sodium salt of glutamic acid, monosodium glutamate (MSG) is manufactured in a large scale and widely used in the food industry.
Glutamic acid versus glutamates
When glutamic acid or any of its salts is dissolved in water, it immediately forms a solution of separate negative ions called glutamates, and positive ions like H
3O+
or Na+
. There is actually a chemical equilibrium among several ionized forms, including zwitterions, that depends on the acidity (pH) of the solution. At the pH ranges normally occurring in foods, the prevailing ion can be described as −OOC-C(NH+
3)-(CH
2)2-COO−, with a net −1 electric charge.
Only the glutamate ion is responsible for the umami taste, so the effect does not depend significantly on the starting compound. However, some crystalline salts such as monosodium glutamate dissolve much better and faster than crystalline glutamic acid, a property important for use as a flavor enhancer.
Discovery
Although they occur naturally in many foods, the flavor contributions made by glutamic acid and other amino acids were only scientifically identified early in the twentieth century. The substance was discovered and identified in the year 1866, by the German chemist Karl Heinrich Ritthausen. In 1907 Japanese researcher Kikunae Ikeda of the Tokyo Imperial University identified brown crystals left behind after the evaporation of a large amount of kombu broth as glutamic acid. These crystals, when tasted, reproduced the ineffable but undeniable flavor he detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate.
Isomers
Only the L-glutamate enantiomer has flavor-enhancing properties. Manufactured monosodium glutamate contains over 99.6% of the naturally-predominant L-glutamate form, which is a higher proportion of L-glutamate than found in the free glutamate ions of fermented naturally-occurring foods. Fermented products such as soy sauce, steak sauce, and Worcestershire sauce have levels of glutamate similar to foods with added monosodium glutamate. However, 5% or more of the glutamate may be the D-enantiomer. Nonfermented naturally-occurring foods have lower relative levels of D-glutamate than fermented products.
Taste perception
Glutamic acid stimulates specific receptors located in taste buds such as the amino acid receptor T1R1/T1R3 or other glutamate receptors like the metabotropic receptors (mGluR4 and mGluR1) which induce the taste known as umami, one of the five basic tastes (the word umami is a loanword from Japanese; it is also referred to as "savory" or "meaty").
In April 1968, Robert Ho Man Kwok wrote a letter to the New England Journal of Medicine, coining the term "Chinese restaurant syndrome". In this letter he claimed:
I have experienced a strange syndrome whenever I have eaten out in a Chinese restaurant, especially one that served northern Chinese food. The syndrome, which usually begins 15 to 20 minutes after I have eaten the first dish, lasts for about two hours, without hangover effect. The most prominent symptoms are numbness at the back of the neck, gradually radiating to both arms and the back, general weakness and palpitations...
The syndrome is often abbreviated as CRS and also became known under the names Chinese food syndrome and monosodium glutamate symptom complex.
Symptoms attributed to the Chinese restaurant syndrome are rather common and unspecific. Although many people believe that monosodium glutamate (MSG) is the cause of these symptoms, an association has never been demonstrated under rigorously controlled conditions, even in studies with people who were convinced that they were sensitive to the compound. Techniques used to adequately control for experimental bias include a placebo-controlled double-blinded experimental design and the use of capsules to deliver the compound to mask the strong and unique after-taste of glutamates.
Timeline
In 1959, the U.S. Food and Drug Administration (FDA) classified monosodium glutamate as generally recognized as safe (GRAS). This action stemmed from the 1958 Food Additives Amendment to the Federal Food, Drug, and Cosmetic Act that required premarket approval for new food additives and led the FDA to promulgate regulations listing substances, such as monosodium glutamate, which have a history of safe use or are otherwise GRAS.
Since 1970, FDA has sponsored extensive reviews on the safety of monosodium glutamate, other glutamates, and hydrolyzed proteins, as part of an ongoing review of safety data on GRAS substances used in processed foods. One such review was by the Federation of American Societies for Experimental Biology (FASEB) Select Committee on GRAS Substances. In 1980, the committee concluded that monosodium glutamate was safe at current levels of use but recommended additional evaluation to determine monosodium glutamate's safety at significantly higher levels of consumption. Additional reports attempted to look at this.
In 1986, FDA's Advisory Committee on Hypersensitivity to Food Constituents concluded that monosodium glutamate poses no threat to the general public but that reactions of brief duration might occur in some people. Other reports have given the following findings:
Excitotoxicity
Because glutamate is absorbed very quickly in the gastrointestinal tract (unlike glutamic acid-containing proteins in foods), glutamate could spike blood plasma levels of glutamate. Glutamic acid is in a class of chemicals known as excitotoxins, high levels of which have been shown in animal studies to cause damage to areas of the brain unprotected by the blood–brain barrier and that a variety of chronic diseases can arise out of this neurotoxicity. There has been debate among scientists on the significance of these findings since the early 1970s, when John Olney found that high levels of glutamic acid caused damage to the brains of infant mice. The debate is complex and has focused mainly on whether the increase in plasma glutamate levels from typical ingestion levels of glutamate is enough to cause neurotoxicity and on whether humans are susceptible to the neurotoxicity from glutamic acid seen in some animal experiments.
At a meeting of the Society for Neuroscience in 1990, the delegates had a split opinion on the issues related to neurotoxic effects from excitotoxic amino acids found in some additives such as monosodium glutamate.
Some scientists believe that humans and other primates are not as susceptible to excitotoxins as rodents and therefore there is little concern with glutamic acid as a food additive. While they agree that the combined effects of all food-based excitotoxins should be considered, their measurements of the blood plasma levels of glutamic acid after ingestion of monosodium glutamate and aspartame demonstrate that there is not a cause for concern.
Olney, a longtime campaigner for greater regulation of MSG, believes that primates are susceptible to excitotoxic damage, and other studies have shown that humans concentrate excitotoxins in the blood more than other animals. Based on these findings, Olney claims that humans are approximately 5–6 times more susceptible to the effects of excitotoxins than rodents are. While he agrees that typical use of monosodium glutamate does not spike glutamic acid to extremely high levels in adults, he is particularly concerned with potential effects in infants and young children and the potential long-term neurodegenerative effects of small-to-moderate spikes on plasma excitotoxin levels.
European Union
Following the compulsory EU-food labeling law the use of glutamic acid and its salts has to be declared, and the name or E number of the salt has to be listed. Glutamic acid and its salts as food additives have the following E numbers: glutamic acid: E620, monosodium glutamate: E621, monopotassium glutamate: E622, calcium diglutamate: E623, monoammonium glutamate: E624, and magnesium diglutamate: E625. In the European Union, these enhancers are not allowed to be added to milk, emulsified fat and oil, pasta, cocoa/chocolate products and fruit juice. The EU has not yet published an official NOAEL (no observable adverse effect level) for glutamate, but a 2006 consensus statement of a group of German experts drawing from animal studies was that a daily intake of glutamic acid of 6 grams per kilogram of body weight (6 g/kg/day) is safe. From human studies, the experts noted that doses as high as 147 g/day produced no adverse effects in males when given for 30 days; in a 70 kg male that corresponds to 2.1 g per kg of body weight.
United States
In 1959, the Food and Drug Administration classified MSG as a "generally recognized as safe" (GRAS) food ingredient under the Federal Food, Drug, and Cosmetic Act. In 1986, FDA's Advisory Committee on Hypersensitivity to Food Constituents also found that MSG was generally safe, but that short-term reactions may occur in some people. To further investigate this matter, in 1992 the FDA contracted the Federation of American Societies for Experimental Biology (FASEB) to produce a detailed report, which was published in 1995. The FASEB report reaffirmed the safety of MSG when it is consumed at usual levels by the general population, and found no evidence of any connection between MSG and any serious long-term reactions.
Under 2003 U.S. Food and Drug Administration regulations, when monosodium glutamate is added to a food, it must be identified as "monosodium glutamate" in the label's ingredient list. Because glutamate is commonly found in food, primarily from protein sources, the FDA does not require foods and ingredients that contain glutamate as an inherent component to list it on the label. Examples include tomatoes, cheeses, meats, hydrolyzed protein products such as soy sauce, and autolyzed yeast extracts. These ingredients are to be declared on the label by their common or usual names. The term 'natural flavor' is now used by the food industry when using glutamic acid. Because of lack of regulation, it is impossible to determine what percentage of 'natural flavor' is actually glutamic acid.
The food additives disodium inosinate and disodium guanylate are usually used in synergy with monosodium glutamate-containing ingredients, and provide a likely indicator of the addition of glutamate to a product.
As of 2002 the National Academy of Sciences Committee on Dietary Reference Intakes had not set a NOAEL or LOAEL for glutamate.
Australia and New Zealand
Standard 1.2.4 of the Australia New Zealand Food Standards Code requires the presence of monosodium glutamate as a food additive to be labeled. The label must bear the food additive class name (e.g. flavor enhancer), followed by either the name of the food additive (e.g. MSG) or its International Numbering System (INS) number (e.g. 621)
Canada
The Canada Food Inspection Agency considers claims of "no MSG" or "MSG free" to be misleading and deceptive when other sources of free glutamates are present.
Ingredients
Food ingredients that contain glutamic acid include: