Kalpana Kalpana (Editor)

Generalized inversive congruential pseudorandom numbers

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

An approach to nonlinear congruential methods of generating uniform pseudorandom numbers in the interval [0,1) is the Inversive congruential generator with prime modulus. A generalization for arbitrary composite moduli m = p 1 , p r with arbitrary distinct primes p 1 , , p r 5 will be present here.

Contents

Let Z m = { 0 , 1 , . . . , m 1 } .For integers a , b Z m with gcd (a,m) = 1 a generalized inversive congruential sequence ( y n ) n 0 of elements of Z m is defined by

y 0 = s e e d y n + 1 a y n φ ( m ) 1 + b ( mod m ) n 0

where φ ( m ) = ( p 1 1 ) ( p r 1 ) denotes the number of positive integers less than m which are relatively prime to m.

Example

Let take m = 15 = 3 × 5 a = 2 , b = 3 and y 0 = 1 . Hence φ ( m ) = 2 × 4 = 8 and the sequence ( y n ) n 0 = ( 1 , 5 , 13 , 2 , 4 , 7 , 1 , ) is not maximum.

The result below shows that these sequences are closely related to the following inversive congruential sequence with prime moduli.

For 1 i r let Z p i = { 0 , 1 , , p i 1 } , m i = m / p i and a i , b i Z p i be integers with

a m i 2 a i ( mod p i ) and  b m i b i ( mod p i )

Let ( y n ) n 0 be a sequence of elements of Z p i , given by

y n + 1 ( i ) a i ( y n ( i ) ) p i 2 + b i ( mod p i ) n 0 where y 0 m i ( y 0 ( i ) ) ( mod p i ) is assumed. 

Theorem 1

Let ( y n ( i ) ) n 0 for 1 i r be defined as above. Then

y n m 1 y n ( 1 ) + m 2 y n ( 2 ) + + m r y n ( r ) ( mod m ) .

This theorem shows that an implementation of Generalized Inversive Congruential Generator is possible,where exact integer computations have to be performed only in Z p 1 , , Z p r but not in Z m .

Proof:

First, observe that m i 0 ( mod p j ) , for i j , and hence y n m 1 y n ( 1 ) + m 2 y n ( 2 ) + + m r y n ( r ) ( mod m ) if and only if y n m i ( y n ( i ) ) ( mod p i ) , for 1 i r which will be shown on induction on n 0 .

Recall that y 0 m i ( y 0 ( i ) ) ( mod p i ) is assumed for 1 i r . Now, suppose that 1 i r and y n m i ( y n ( i ) ) ( mod p i ) for some integer n 0 . Then straightforward calculations and Fermat's Theorem yield

y n + 1 a y n φ ( m ) 1 + b m i ( a i m i φ ( m ) ( y n ( i ) ) φ ( m ) 1 + b i ) m i ( a i ( y n ( i ) ) p i 2 + b i ) m i ( y n + 1 ( i ) ) ( mod p i ) ,

which implies the desired result.

Generalized Inversive Congruential Pseudorandom Numbers are well equidistributed in one dimension. A reliable theoretical approach for assessing their statistical independence properties is based on the discrepancy of s-tuples of pseudorandom numbers.

Discrepancy bounds of the GIC Generator

We use the notation D m s = D m ( x 0 , , x m 1 ) where x n = ( x n , x n + 1 , , x n + s 1 ) [ 0 , 1 ) s of Generalized Inversive Congruential Pseudorandom Numbers for s 2 .

Higher bound

Let s 2 Then the discrepancy D m s satisfies D m s < m 1 / 2 × ( 2 π × log m + 7 5 ) s × i = 1 r ( 2 s 2 + s ( p i ) 1 / 2 ) + s m 1 for any Generalized Inversive Congruential operator.

Lower bound:

There exist Generalized Inversive Congruential Generators with D m s 1 2 ( π + 2 ) × m 1 / 2  : × i = 1 r ( p i 3 p i 1 ) 1 / 2 for all dimension s  :≥ 2.

For a fixed number r of prime factors of m, Theorem 2 shows that D m ( s ) = O ( m 1 / 2 ( log m ) s ) for any Generalized Inversive Congruential Sequence. In this case Theorem 3 implies that there exist Generalized Inversive Congruential Generators having a discrepancy D m ( s ) which is at least of the order of magnitude m 1 / 2 for all dimension s 2 . However,if m is composed only of small primes, then r can be of an order of magnitude ( log m ) / log log m and hence i = 1 r ( 2 s 2 + s ( p i ) 1 / 2 ) = O ( m ϵ ) for every ϵ > 0 . Therefore, one obtains in the general case D m s = O ( m 1 / 2 + ϵ ) for every ϵ > 0 .

Since i = 1 r ( ( p i 3 ) / ( p i 1 ) ) 1 / 2 2 r / 2 , similar arguments imply that in the general case the lower bound in Theorem 3 is at least of the order of magnitude m 1 / 2 ϵ for every ϵ > 0 . It is this range of magnitudes where one also finds the discrepancy of m independent and uniformly distributed random points which almost always has the order of magnitude m 1 / 2 ( log log m ) 1 / 2 according to the law of the iterated logarithm for discrepancies. In this sense, Generalized Inversive Congruential Pseudo-random Numbers model true random numbers very closely.

References

Generalized inversive congruential pseudorandom numbers Wikipedia