Generalized Context-free Grammar (GCFG) is a grammar formalism that expands on context-free grammars by adding potentially non-context free composition functions to rewrite rules. Head grammar (and its weak equivalents) is an instance of such a GCFG which is known to be especially adept at handling a wide variety of non-CF properties of natural language.
Contents
Description
A GCFG consists of two components: a set of composition functions that combine string tuples, and a set of rewrite rules. The composition functions all have the form
The rewrite semantics of GCFGs is fairly straightforward. An occurrence of a non-terminal symbol is rewritten using rewrite rules as in a context-free grammar, eventually yielding just compositions (composition functions applied to string tuples or other compositions). The composition functions are then applied, successively reducing the tuples to a single tuple.
Example
A simple translation of a context-free grammar into a GCFG can be performed in the following fashion. Given the grammar in (1), which generates the palindrome language
The CF production of abbbba is
SaSaabSbaabbSbbaabbbbaand the corresponding GCFG production is
Linear Context-free Rewriting Systems (LCFRSs)
Weir (1988) describes two properties of composition functions, linearity and regularity. A function defined as
A grammar in which all composition functions are both linear and regular is called a Linear Context-free Rewriting System (LCFRS). LCFRS is a proper subclass of the GCFGs, i.e. it has strictly less computational power than the GCFGs as a whole.
On the other hand, LCFRSs are strictly more expressive than linear-indexed grammars and their weakly equivalent variant tree adjoining grammars (TAGs). Head grammar is another example of an LCFRS that is strictly less powerful than the class of LCFRSs as a whole.
LCFRS are weakly equivalent to (set-local) multicomponent TAGs (MCTAGs) and also with multiple context-free grammar (MCFGs [1]). and minimalist grammars (MGs). The languages generated by LCFRS (and their weakly equivalents) can be parsed in polynomial time.