![]() | ||
The free energy principle tries to explain how (biological) systems maintain their order (non-equilibrium steady-state) by restricting themselves to a limited number of states. It says that biological systems minimise a free energy functional of their internal states, which entail beliefs about hidden states in their environment. The implicit minimisation of variational free energy is formally related to variational Bayesian methods and was originally introduced by Karl Friston as an explanation for embodied perception in neuroscience, where it is also known as active inference.
Contents
- Background
- Relationship to other theories
- Definition
- Action and perception
- Free energy minimisation and self organisation
- Free energy minimisation and Bayesian inference
- Free energy minimisation and thermodynamics
- Free energy minimisation and information theory
- Free energy minimisation in neuroscience
- Perceptual inference and categorisation
- Perceptual learning and memory
- Perceptual precision attention and salience
- Active inference
- Active inference and optimal control
- Active inference and optimal decision game theory
- Active inference and cognitive neuroscience
- References
Background
The notion that self-organising biological systems – like a cell or brain – can be understood as minimising variational free energy is based upon Helmholtz’s observations on unconscious inference and subsequent treatments in psychology and machine learning. Variational free energy is a function of some outcomes and a probability density over their (hidden) causes. This variational density is defined in relation to a probabilistic model that generates outcomes from causes. In this setting, free energy provides an (upper bound) approximation to Bayesian model evidence. Its minimisation can therefore be used to explain Bayesian inference and learning. When a system actively samples outcomes to minimise free energy, it implicitly performs active inference and maximises the evidence for its (generative) model.
However, free energy is also an upper bound on the self-information (or surprise) of outcomes, where the long-term average of surprise is entropy. This means that if a system acts to minimise free energy, it will implicitly place an upper bound on the entropy of the outcomes – or sensory states – it samples.
Relationship to other theories
Active inference is closely related to the good regulator theorem and related accounts of self-organisation, such as self-assembly, pattern formation and autopoiesis. It addresses the themes considered in cybernetics, synergetics and embodied cognition. Because free energy can be expressed as the expected energy (of outcomes) under the variational density minus its entropy, it is also related to the maximum entropy principle. Finally, because the time average of energy is action, the principle of minimum variational free energy is a principle of least action.
Definition
Definition (continuous formulation): Active inference rests on the tuple
Action and perception
The objective is to maximise model evidence
This induces a dual minimisation with respect to action and internal states that correspond to action and perception respectively.
Free energy minimisation and self-organisation
Free energy minimisation has been proposed as a hallmark of self-organising systems, when cast as random dynamical systems. This formulation rests on a Markov blanket (comprising action and sensory states) that separates internal and external states. If internal states and action minimise free energy, then they place an upper bound on the entropy of sensory states
This is because – under ergodic assumptions – the long-term average of surprise is entropy. This bound resists a natural tendency to disorder – of the sort associated with the second law of thermodynamics and the fluctuation theorem.
Free energy minimisation and Bayesian inference
All Bayesian inference can be cast in terms of free energy minimisation; e.g.,. When free energy is minimised with respect to internal states, the Kullback–Leibler divergence between the variational and posterior density over hidden states is minimised. This corresponds to approximate Bayesian inference – when the form of the variational density is fixed – and exact Bayesian inference otherwise. Free energy minimisation therefore provides a generic description of Bayesian inference and filtering (e.g., Kalman filtering). It is also used in Bayesian model selection, where free energy can be usefully decomposed into complexity and accuracy:
Models with minimum free energy provide an accurate explanation of data, under complexity costs (c.f., Occam's razor and more formal treatments of computational costs ). Here, complexity is the divergence between the variational density and prior beliefs about hidden states (i.e., the effective degrees of freedom used to explain the data).
Free energy minimisation and thermodynamics
Variational free energy is an information theoretic functional and is distinct from thermodynamic (Helmholtz) free energy. However, the complexity term of variational free energy shares the same fixed point as Helmholtz free energy (under the assumption the system is thermodynamically closed but not isolated). This is because if sensory perturbations are suspended (for a suitably long period of time), complexity is minimised (because accuracy can be neglected). At this point, the system is at equilibrium and internal states minimise Helmholtz free energy, by the principle of minimum energy.
Free energy minimisation and information theory
Free energy minimisation is equivalent to maximising the mutual information between sensory states and internal states that parameterise the variational density (for a fixed entropy variational density). This relates free energy minimization to the principle of minimum redundancy and related treatments using information theory to describe optimal behaviour.
Free energy minimisation in neuroscience
Free energy minimisation provides a useful way to formulate normative (Bayes optimal) models of neuronal inference and learning under uncertainty and therefore subscribes to the Bayesian brain hypothesis. The neuronal processes described by free energy minimisation depend on the nature of hidden states:
Perceptual inference and categorisation
Free energy minimisation formalises the notion of unconscious inference in perception and provides a normative (Bayesian) theory of neuronal processing. The associated process theory of neuronal dynamics is based on minimising free energy through gradient descent. This corresponds to generalised Bayesian filtering (where ~ denotes a variable in generalised coordinates of motion and
Usually, the generative models that define free energy are non-linear and hierarchical (like cortical hierarchies in the brain). Special cases of generalised filtering include Kalman filtering, which is formally equivalent to predictive coding – a popular metaphor for message passing in the brain. Under hierarchical models, predictive coding involves the recurrent exchange of ascending (bottom-up) prediction errors and descending (top-down) predictions that is consistent with the anatomy and physiology of sensory and motor systems.
Perceptual learning and memory
In predictive coding, optimising model parameters through a gradient ascent on the time integral of free energy (free action) reduces to associative or Hebbian plasticity and is associated with synaptic plasticity in the brain.
Perceptual precision, attention and salience
Optimising the precision parameters corresponds to optimising the gain of prediction errors (c.f., Kalman gain). In neuronally plausible implementations of predictive coding, this corresponds to optimising the excitability superficial pyramidal cells and has been interpreted in terms of attentional gain.
Active inference
When gradient descent is applied to action
Active inference and optimal control
Active inference is related to optimal control by replacing value or cost-to-go functions with prior beliefs about state transitions or flow. This exploits the close connection between Bayesian filtering and the solution to the Bellman equation. However, active inference starts with (priors over) flow
Active inference and optimal decision (game) theory
Optimal decision problems (usually formulated as partially observable Markov decision processes) are treated within active inference by absorbing utility functions into prior beliefs. In this setting, states that have a high utility (low cost) are states an agent expects to occupy. By equipping the generative model with hidden states that model control, policies (control sequences) that minimise variational free energy lead to high utility states.
Neurobiologically, neuromodulators like dopamine are considered to report the precision of prediction errors by modulating the gain of principal cells encoding prediction error. This is closely related to – but formally distinct from – the role of dopamine in reporting prediction errors per se and related computational accounts.
Active inference and cognitive neuroscience
Active inference has been used to address a range of issues in cognitive neuroscience, brain function and neuropsychiatry, including: action observation, mirror neurons, saccades and visual search, eye movements, sleep, illusions, attention, action selection, hysteria and psychosis.