In linear algebra, a frame of an inner product space is a generalization of a basis of a vector space to sets that may be linearly dependent. In the terminology of signal processing, a frame provides a redundant, stable way of representing a signal. Frames are used in error detection and correction and the design and analysis of filter banks and more generally in applied mathematics, computer science, and engineering.
Contents
Motivating example: computing a basis from a linearly dependent set
Suppose we have a set of vectors
If the set
Given that
- Removing arbitrary vectors from the set may cause it to be unable to span
V before it becomes linearly independent. - Even if it is possible to devise a specific way to remove vectors from the set until it becomes a basis, this approach may become infeasible in practice if the set is large or infinite.
- In some applications, it may be an advantage to use more vectors than necessary to represent
v . This means that we want to find the coefficientsc k { e k } . The coefficientsc k v . Therefore, the vectorv can be represented as a linear combination of{ e k } in more than one way.
Formal definition
Let V be an inner product space and
A set of vectors that satisfies the frame condition is a frame for the vector space.
The numbers A and B are called the lower and upper frame bounds, respectively. The frame bounds are not unique because numbers less than A and greater than B are also valid frame bounds. The optimal lower bound is the supremum of all lower bounds and the optimal upper bound is the infimum of all upper bounds.
A frame is overcomplete (or redundant) if it is not a basis for the vector space.
History
Because of the various mathematical components surrounding frames, frame theory has roots in harmonic and functional analysis, operator theory, linear algebra, and matrix theory.
The Fourier transform has been used for over a century as a way of decomposing and expanding signals. However, the Fourier transform masks key information regarding the moment of emission and the duration of a signal. In 1946, Dennis Gabor was able to solve this using a technique that simultaneously reduced noise, provided resiliency, and created quantization while encapsulating important signal characteristics. This discovery marked the first concerted effort towards frame theory.
The frame condition was first described by Richard Duffin and Albert Charles Schaeffer in a 1952 article on nonharmonic Fourier series as a way of computing the coefficients in a linear combination of the vectors of a linearly dependent spanning set (in their terminology, a "Hilbert space frame"). In the 1980s, Stéphane Mallat, Ingrid Daubechies, and Mayer used frames to analyze wavelets. Today frames are associated with wavelets, signal and image processing, and data compression.
Relation to bases
A frame satisfies a generalization of Parseval's identity, namely the frame condition, while still maintaining norm equivalence between a signal and its sequence of coefficients.
If the set
therefore
If a set of vectors spans V, this is not a sufficient condition for calling the set a frame. As an example, consider
This set spans V but since
Applications
In signal processing, each vector is interpreted as a signal. In this interpretation, a vector expressed as a linear combination of the frame vectors is a redundant signal. Using a frame, it is possible to create a simpler, more sparse representation of a signal as compared with a family of elementary signals (that is, representing a signal strictly with a set of linearly independent vectors may not always be the most compact form). Frames, therefore, provide robustness. Because they provide a way of producing the same vector within a space, signals can be encoded in various ways. This facilitates fault tolerance and resilience to a loss of signal. Finally, redundancy can be used to mitigate noise, which is relevant to the restoration, enhancement, and reconstruction of signals.
In signal processing, it is common to assume the vector space is a Hilbert space.
Special cases
A frame is a tight frame if A = B; in other words, the frame satisfies a generalized version of Parseval's identity. For example, the union of k orthonormal bases of a vector space is a tight frame with A = B = k. A tight frame is a Parseval frame (sometimes called a normalized frame) if A = B = 1. Each orthonormal basis is a Parseval frame, but the converse is not always true.
A frame is an equal norm frame (sometimes called a uniform frame or a normalized frame) if there is a constant c such that
A frame is an equiangular frame if there is a constant c such that
A frame is an exact frame if no proper subset of the frame spans the inner product space. Each basis for an inner product space is an exact frame for the space (so a basis is a special case of a frame).
Generalizations
A bessel sequence is a set of vectors that satisfies only the upper bound of the frame condition.
Dual frames
The frame condition entails the existence of a set of dual frame vectors
for any
In order to construct a dual frame, we first need the linear mapping
From this definition of
which, when substituted in the frame condition inequality, yields
for each
The frame operator
The dual frame is defined by mapping each element of the frame with
To see that this makes sense, let
Thus
which proves that
Alternatively, we can let
By inserting the above definition of
which shows that
The numbers
The dual frame
When the frame
for all