Suvarna Garge (Editor)

Fractional coordinates

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Fractional coordinates

General case

Let us consider a system of periodic structure in space and use a , b , and c as the three independent period vectors, forming a right-handed triad, which are also the edge vectors of a cell of the system. Then any vector r in Cartesian coordiantes can be written as a linear combination of the period vectors

Contents

r = u a + v b + w c .

Our task is to calculate the scalar coefficients u , v , and w , assuming r , a , b , and c are known.

For this purpose, let us calculate the following cell surface area vector

σ a = b × c ,

then

b σ a = 0 , c σ a = 0 ,

and the volume of the cell is

Ω = a σ a .

If we do a vector inner (dot) product as follows

r σ a = u a σ a + v b σ a + w c σ a = u a σ a = u Ω ,

then we get

u = 1 Ω r σ a .

Similarly,

σ b = c × a , c σ b = 0 , a σ b = 0 , b σ b = Ω , r σ b = u a σ b + v b σ b + w c σ b = v b σ b = v Ω ,

we arrive at

v = 1 Ω r σ b ,

and

σ c = a × b , a σ c = 0 , b σ c = 0 , c σ c = Ω , r σ c = u a σ c + v b σ c + w c σ c = w c σ c = w Ω , w = 1 Ω r σ c .

If there are many r s to be converted with respect to the same period vectors, to speed up, we can have

u = r σ a , v = r σ b , w = r σ c ,

where

σ a = 1 Ω σ a , σ b = 1 Ω σ b , σ c = 1 Ω σ c .

In Crystallography

In crystallography, the lengths ( a , b , c ) of and angles ( α , β , γ ) between the edge (period) vectors ( a , b , c ) of the parallelepiped unit cell are known. For simplicty, it is chosen so that edge vector a in the positive x -axis direction, edge vector b in the x y plane with positive y -axis component, edge vector c with positive z -axis component in the Cartesian-system, as shown in the figure below.

Then the edge vectors can be written as

a = ( a , 0 , 0 ) , b = ( b cos ( γ ) , b sin ( γ ) , 0 ) , c = ( c x , c y , c z ) ,

where all a , b , c , sin ( γ ) , c z are positive. Next, let us express all c components with known variables. This can be done with

c a = a c cos ( β ) = c x a , c b = b c cos ( α ) = c x b cos ( γ ) + c y b sin ( γ ) , c c = c 2 = c x 2 + c y 2 + c z 2 .

Then

c x = c cos ( β ) , c y = c cos ( α ) cos ( γ ) cos ( β ) sin ( γ ) , c z 2 = c 2 c x 2 c y 2 = c 2 { 1 cos 2 ( β ) [ cos ( α ) cos ( γ ) cos ( β ) ] 2 sin 2 ( γ ) } .

The last one continues

c z 2 = c 2 sin 2 ( γ ) sin 2 ( γ ) cos 2 ( β ) [ cos ( α ) cos ( γ ) cos ( β ) ] 2 sin 2 ( γ ) = c 2 sin 2 ( γ ) { sin 2 ( γ ) sin 2 ( γ ) cos 2 ( β ) [ cos ( α ) cos ( γ ) cos ( β ) ] 2 }

where

sin 2 ( γ ) sin 2 ( γ ) cos 2 ( β ) [ cos ( α ) cos ( γ ) cos ( β ) ] 2 = sin 2 ( γ ) sin 2 ( γ ) cos 2 ( β ) cos 2 ( α ) cos 2 ( γ ) cos 2 ( β ) + 2 cos ( α ) cos ( γ ) cos ( β ) = sin 2 ( γ ) cos 2 ( α ) sin 2 ( γ ) cos 2 ( β ) cos 2 ( γ ) cos 2 ( β ) + 2 cos ( α ) cos ( β ) cos ( γ ) = sin 2 ( γ ) cos 2 ( α ) [ sin 2 ( γ ) + cos 2 ( γ ) ] cos 2 ( β ) + 2 cos ( α ) cos ( β ) cos ( γ ) = sin 2 ( γ ) cos 2 ( α ) cos 2 ( β ) + 2 cos ( α ) cos ( β ) cos ( γ ) = 1 cos 2 ( α ) cos 2 ( β ) cos 2 ( γ ) + 2 cos ( α ) cos ( β ) cos ( γ ) .

Remembering c z , c , and sin ( γ ) being positive, one gets

c z = c sin ( γ ) 1 cos 2 ( α ) cos 2 ( β ) cos 2 ( γ ) + 2 cos ( α ) cos ( β ) cos ( γ ) .

Since the absolute value of the bottom surface area of the cell is

| σ c | = a b sin ( γ ) ,

the volume of the parallelepiped cell can also be expressed as

Ω = c z | σ c | = a b c 1 cos 2 ( α ) cos 2 ( β ) cos 2 ( γ ) + 2 cos ( α ) cos ( β ) cos ( γ ) .

Once the volume is calculated as above, one has

c z = Ω a b sin ( γ ) .

Now let us summarize the expression of the edge (period) vectors

a = ( a x , a y , a z ) = ( a , 0 , 0 ) , b = ( b x , b y , b z ) = ( b cos ( γ ) , b sin ( γ ) , 0 ) , c = ( c x , c y , c z ) = ( c cos ( β ) , c cos ( α ) cos ( β ) cos ( γ ) sin ( γ ) , Ω a b sin ( γ ) ) .

Conversion from cartesian coordinates

Let us calculate the following surface area vector of the cell first

σ a = ( σ a , x , σ a , y , σ a , z ) = b × c ,

where

σ a , x = b y c z b z c y = b sin ( γ ) Ω a b sin ( γ ) = Ω a , σ a , y = b z c x b x c z = b cos ( γ ) Ω a b sin ( γ ) = Ω cos ( γ ) a sin ( γ ) , σ a , z = b x c y b y c x = b cos ( γ ) c cos ( α ) cos ( β ) cos ( γ ) sin ( γ ) b sin ( γ ) c cos ( β ) = b c { cos ( γ ) cos ( α ) cos ( β ) cos ( γ ) sin ( γ ) sin ( γ ) cos ( β ) } = b c sin ( γ ) { cos ( γ ) [ cos ( α ) cos ( β ) cos ( γ ) ] sin 2 ( γ ) cos ( β ) } = b c sin ( γ ) { cos ( γ ) cos ( α ) cos ( β ) cos 2 ( γ ) sin 2 ( γ ) cos ( β ) } = b c sin ( γ ) { cos ( α ) cos ( γ ) cos ( β ) } .

Another surface area vector of the cell

σ b = ( σ b , x , σ b , y , σ b , z ) = c × a ,

where

σ b , x = c y a z c z a y = 0 , σ b , y = c z a x c x a z = a Ω a b sin ( γ ) = Ω b sin ( γ ) , σ b , z = c x a y c y a x = a c cos ( α ) cos ( β ) cos ( γ ) sin ( γ ) = a c sin ( γ ) { cos ( β ) cos ( γ ) cos ( α ) } .

The last surface area vector of the cell

σ c = ( σ c , x , σ c , y , σ c , z ) = a × b ,

where

σ c , x = a y b z a z b y = 0 , σ c , y = a z b x a x b z = 0 , σ c , z = a x b y a y b x = a b sin ( γ ) .

Summarize

σ a = 1 Ω σ a = ( 1 a , cos ( γ ) a sin ( γ ) , b c cos ( α ) cos ( γ ) cos ( β ) Ω sin ( γ ) ) , σ b = 1 Ω σ b = ( 0 , 1 b sin ( γ ) , a c cos ( β ) cos ( γ ) cos ( α ) Ω sin ( γ ) ) , σ c = 1 Ω σ c = ( 0 , 0 , a b sin ( γ ) Ω ) .

As a result

[ u v w ] = [ 1 a cos ( γ ) a sin ( γ ) b c cos ( α ) cos ( γ ) cos ( β ) Ω sin ( γ ) 0 1 b sin ( γ ) a c cos ( β ) cos ( γ ) cos ( α ) Ω sin ( γ ) 0 0 a b sin ( γ ) Ω ] [ x y z ]

where ( a , b , c ) are the components of the arbitrary vector r in Cartesian coordiantes.

Conversion to cartesian coordinates

To return the orthogonal coordinates in ångströms from fractional coordinates, one can employ the first equation on top and the expression of the edge (period) vectors

[ x y z ] = [ a b cos ( γ ) c cos ( β ) 0 b sin ( γ ) c cos ( α ) cos ( β ) cos ( γ ) sin ( γ ) 0 0 Ω a b sin ( γ ) ] [ u v w ] .

For the special case of a monoclinic cell (a common case) where α = γ = 90 and β > 90 , this gives:

x = a u + c w cos ( β ) , y = b v , z = Ω a b w = c w sin ( β ) .

Supporting file formats

  • CPMD input
  • CIF
  • References

    Fractional coordinates Wikipedia