Neha Patil (Editor)

Field desorption

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Field desorption

Field desorption (FD) is a method of ion formation used in mass spectrometry in which a high-potential electric field is applied to an emitter with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny "whiskers" have formed. This results in a high electric field which can result in ionization of gaseous molecules of the analyte. Mass spectra produced by FD have little or no fragmentation because FD is a soft ionization method. They are dominated by molecular radical cations M+. and less often, protonated molecules [ M + H ] + . The technique was first reported by Beckey in 1969.

Contents

Mechanism

In FD, the analyte is applied as a thin film directly to the emitter, or small crystals of solid materials are placed onto the emitter. Slow heating of the emitter then begins, by passing a high current through the emitter, which is maintained at a high potential (e.g. 5 kilovolts). As heating of the emitter continues, low-vapor-pressure materials get desorbed and ionized by alkali metal cation attachment.

Applications

Many earlier applications of FD to analysis of polar and nonvolatile analytes such as polymers and biological molecules have largely been supplanted by newer ionization techniques. However, FD remains one of the only ionization techniques that can produce simple mass spectra with molecular information from hydrocarbons and other particular analytes. The most commonly encountered application of FD at the present time is the analysis of complex mixtures of hydrocarbons such as that found in petroleum fractions.

Liquid injection

The recently developed liquid injection FD ionization (LIFDI) technique "presents a major breakthrough for FD-MS of reactive analytes": Transition metal complexes are neutral and due to their reactivity, do not undergo protonation or ion attachment. They benefit from both: the soft FD ionization and the safe and simple LIFDI transfer of air/moisture sensitive analyte solution. This transfer occurs from the Schlenk flask to the FD emitter in the ion source through a fused silica capillary without breaking the vacuum.

References

Field desorption Wikipedia